

The XENON collaboration

12 Countries, 27 institutions, ~160 scientists

2

The XENON collaboration 12 Countries, 27 institutions, ~160 scientists

XENON experiments

The (main) target of XENON project: Direct detection of dark matter

• WIMPs, ALPs, ...

Other physics targets: Solar axions, neutrino physics, ...

Years	2005 - 2007	2008 - 20
Total Xe mass	25 kg	161 kg
WIMPs sensitivity	~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cn

Two-phase Xe Time Projection Chamber as WIMP detector XENON experiments: liquid xenon IPC

- DM and BG particles generate signal in LXe:
 - S1: Scintillation photons
 - S2: Ionization electrons

- S2/S1 depends on the type of interaction
 - Electronic recoils: Gamma, Beta, Axion...
 - Nuclear recoils: Neutron, WIMPs...
- ER has larger S2 than NR events: BG rejection
- Very high sensitivity for WIMPs

The XENONnT

- Detector located at Gran Sasso Laboratories, Italy
- Underground space to suppress muons
 - 1500 m of rock ~ 3600 m.w.e.
 - ~10⁻⁶ of surface muon flux

The XENONnT

The XENONnT

Neutron Veto

XENONnT detector

XENONnT TPC

• XENONnT TPC

- Diameter=1.3m, Height=1.5m
- Full/Active: 8.6 / 5.9t
 - ~x3 larger than XENON1T
- Low energy ER BG: 1/6 of XENON1T
 - Target: ²²²Rn 1uBq/kg

- Direct liquid circulation with cryogenic pump
- Online purity measurement by purity monitor
- Multiple filters works very well
 - High eff / high Rn (for intense purification)
 - Mid eff / low Rn (for DM data taking)
 - Arxiv:2205.07336 for more detail
- Achieved x10 better purity than XENON1T (> 10ms)

- Direct liquid circulation with cryogenic pump
- Online purity measurement by purity monitor
- Multiple filters works very well
 - High eff / high Rn (for intense purification)
 - Mid eff / low Rn (for DM data taking)
 - Arxiv:2205.07336 for more detail
- Achieved x10 better purity than XENON1T
 (> 10ms)

- Direct liquid circulation with cryogenic pump
- Online purity measurement by purity monitor
- Multiple filters works very well
 - High eff / high Rn (for intense purification)
 - Mid eff / low Rn (for DM data taking)
 - Arxiv:2205.07336 for more detail
- Achieved x10 better purity than XENON1T
 (> 10ms)

12

Xenon Oxygen Filter Material Selections ystem

Copper power on ceramic ball

Non evaporable getter

From: SAES Getters https://www.saesgetters.com/sites/ default/files/St%20707%20Pills%20%26%20Pieces_0.pdf (2012)

- Direct liquid circulation with cryogenic pump
- Online purity measurement by purity monitor
- Multiple filters works very well
 - High eff / high Rn (for intense purification)
 SAES St707 getter
 nowder in a controlled manufacturing process. The second sec
 - Mid eff / low Rn (for DM data taking)
 - Arxiv:2205.07336 for more detail
- Achieved x10 better purity than XENON1T (> 10ms)

20

- Direct liquid circulation with cryogenic pump
- Online purity measurement by purity monitor
- Multiple filters works very well
 - High eff / high Rn (for intense purification)
 - Mid eff / low Rn (for DM data taking)
 - Arxiv:2205.07336 for more detail
- Achieved x10 better purity than XENON1T (> 10ms)

14

16

- Online purity measurement by purity monitor
- Multiple filters works very well
 - High eff / high Rn (for intense purification)
 - Mid eff / low Rn (for DM data taking)
 - Arxiv:2205.07336 for more detail
- Achieved x10 better purity than XENON1T (> 10ms)

Rn distillation system

- Rn atom accumulates more into LXe than GXe
 - Rn distillation: pure off-gas
- Rn atoms are kept in the column and decay
- Already tested in XENON100, XENON1T
 - Eur. Phys. J. C (2017) 77: 358
- New Rn column built for XENONnT: 200SLPM speed

Rn distillation system

Two operation modes: GXe + LXe

GXe mode:

- Remove Rn from GXe, before entering to LXe
- Ex: signal cables, cryogenic pipe, ...
- LXe mode:
 - Remove Rn from LXe
 - Ex: TPC body, PMT, ...
- 1.7uBq/kg achieved with GXe-only mode
 - Further x2 reduction expected with GXe+LXe mode: 1 uBq/kg or less

Neutron Veto

- Neutron: ultimate BG for WIMPs search
- Neutron Veto system
 - Gd-Water Cherenkov detector
- Neutrons are captured by Gd, then produce 8MeV γ
- Covering entire Cryostat with ePTFE structure
- Tagging efficiency: ~80-90% expected from simulation
 - At 0.5% Gd₂(SO₄)₃ 8H₂O

Neutron Veto

- Neutron: ultimate BG for WIMPs search
- Neutron Veto system
 - Gd-Water Cherenkov detector
- Neutrons are captured by Gd, then produce 8MeV y
- Covering entire Cryostat with ePTFE structure
- Tagging efficiency: ~80-90% expected from simulation
 - At 0.5% Gd₂(SO₄)₃ 8H₂O

Xenon storage

RestoX1

RestoX2

Xenon storage

RestoX1

RestoX2

temperature

Expected sensitivity (SI WIMP)

• JCAP 11 (2020) 031 for more detail

22

- XENON1T LowER excess in 1-7 keV region
 - Phys.Rev.D 102 (2020) 7, 072004
- Significance with Axion spectrum:
 - 3.4 σ without tritium BG assumption
 - 2.0 σ with tritium BG assumption
- Discrimination power between axion and tritium
 - With 1T best fit BG
- Axion/tritium can be distinguished even with few month of data (depending on Rn level)
 - XENONnT Rn level from alpha: ~1.7 uBq/kg

23

Data taking

- Science data taking stared since mid 2021:
 - Internal calibration: Kr, Rn, Ar
 - External calibration: AmBe
- Energy scale, cut efficiency, simulation...
- DM data taking and analysis ongoing

²²⁰Rn calibration spectrum

Reconstructed Energy [keV]

AmBe calibration spectrum

Summary

- The XENONnT finished construction on 2020 and started data taking since mid 2021
- New subsystems works very well
 - High e-lifetime: >10ms
 - Lowest Rn level: 1.7 uBq/kg (and can be further lowered)
- Science data taking and analysis is ongoing: stay tuned!

Summary

- The XENONnT finished construction on 2020 and started data taking since mid 2021
- New subsystems works very well
 - High e-lifetime: >10ms
 - Lowest Rn level: 1.7 uBq/kg (and can be further lowered)
- Science data taking and analysis is ongoing: stay tuned!

