

Energy resolution of the LZ detector for High-Energy Electronic Recoils

5th XeSAT conference

May 24, 2022

Guilherme Pereira | LIP Coimbra on behalf of the LUX-ZEPLIN collaboration

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Liquid Xenon TPC:

- 1.5 m diameter by 1.5 m height
- Active Mass: 7 t
 - \circ 623 kg of ^{136}Xe
 - \circ $\,$ 741 kg of ^{134}Xe
- Fiducial: 5.6 t
- 494×3" PMTs

3 components veto detector:

- Water Tank + Gadolinium-loaded scintillator
- Liquid Xe skin

Scientific program

- 1. WIMP search
- 2. Neutrino physics searches

$$\circ \quad 2v2\beta - Q_{\beta\beta} = 826 \text{ keV} (^{134}\text{Xe})$$

- $0v2\beta Q_{\beta\beta} = 2458 \text{ keV} (^{136}\text{Xe})$
 - Requires good energy resolution for high energies

gp | LIP Coimbra | 3

<u>PMT phd calibration</u> Non-invasive technique

developed for ZEPLIN

corrections of gains Produced with Single

Time dependent

Electron events

•

•

•

Position reconstruction results

- Two main features:
 - Two hotspots on the left most likely activity from two resistors located at the bottom of the detector (still under investigation)
 - Low event density regions in the periphery boundary condition artifact of the density algorithm

 Scatter plots with the color representing the interpolation of the respective 2D histogram bins – per event density

Doke plot - measure g1 and g2

- S2 bottom only
- Density cuts (clean clusters) + Gaussian Mixture Model (initial guess) + 2D Gaussian Fitting (final results).

Xe-127 L lines (208.2 keV and 380 keV) have an **unresolved M shell contribution**.

• Its effects are handled in the final energy resolution results

Energy spatial dependency

• Study of effects leading to depth-dependent variations of the resolution is still in progress

Comparing with NEST

- Parameters used in NEST simulation (v2.3.5):
 - \circ g1: 0.1057 phd/ph
 - E field gas = 8.1956 kV/cm
- Fano factor = 1
 - Initial fluctuations of the S1 and S2 given by a Poisson distribution

Comparing with XENON1T

gp | LIP Coimbra | 16

Both groups capable of demonstrating the excellent properties of LXe

- LZ better by ~17% at 2.617 MeV
- LZ performing better than the resolution used in the projected sensitivities for 0v2β

COLLABORATION, LUX-ZEPLIN LZ, et al. Projected sensitivity of the LUX-ZEPLIN experiment to the $0\nu\beta\beta$ decay of Xe 136. Physical Review C, 2020, 102.1: 014602.

- The LZ experiment, while primarily designed for a WIMP search, has a considerable sensitivity to neutrinoless double beta decay of ¹³⁶Xe and ¹³⁴Xe isotopes
- The experiment has started taking science data, and extensive analyses are underway
- In this work we demonstrated the record energy resolution for any LXe detector
 - Resolution of **0.64 ± 0.02% at 2614 keV** for the full fiducial
 - Resolution of 0.56 ± 0.03% at 2614 keV for the bottom part of the detector (due to improved S1 collection)

LZ (LUX-ZEPLIN) Collaboration

35 Institutions: 250 scientists, engineers, and technical staff

- **Black Hills State University** •
- **Brandeis University** •
- **Brookhaven National Laboratory** •
- **Brown University** •
- **Center for Underground Physics** .
- Edinburgh University .
- Fermi National Accelerator Lab. •
- Imperial College London •
- Lawrence Berkeley National Lab. •
- Lawrence Livermore National Lab.
- LIP Coimbra •
- Northwestern University •
- Pennsylvania State University •
- **Royal Holloway University of London** .
- **SLAC National Accelerator Lab.** •
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab. •
- **Texas A&M University** •
- University of Albany, SUNY ٠
- **University of Alabama** •
- **University of Bristol** •
- **University College London** .
- **University of California Berkeley**
- **University of California Davis** •
- University of California Los Angeles •
- **University of California Santa Barbara**
- University of Liverpool .
- **University of Maryland** •
- University of Massachusetts, Amherst •
- **University of Michigan**
- University of Oxford .
- **University of Rochester** •
- **University of Sheffield** .
- University of Wisconsin, Madison

LZ Collaboration Meeting - September 8-11, 2021

U.S. Department of Energy Office of Science

Fundação para a Ciência e a Tecnologia

https://lz.lbl.gov/

O)

LZ overview - with field values

- 1.5 m diameter by 1.5 m height
- Fiducial: 5.6 T
- 494x 3" PMTs

3 veto detector:

- Water Tank + Gd-loaded scintillator
- Liquid Xe skin

Electric field maintained by 3 electrodes:

- Cathode HV of 32 kV and G-A of 8 kV
- Extraction field: ~7.5 kV/cm
- Drift field: ~190 V/cm
 - Max drift time: 895 μs

Energy Reconstruction

$$E = W\left(\frac{S1}{g1} + \frac{S2}{g2}\right)$$
$$W = 0.0137 \ keV$$

S2 = S2raw_area_phd × $C_{elt}(t_d, \tau)$ × $C_{lc}(x,y)$ × $C_v(x,y)$

- C_{elt} Electron lifetime
- C_{Ic} Light collection efficiency
- C_y S2 yield (electron extraction and electroluminescence efficiency)

Light collection correction $C_{lc}(x,y)$ is applied w.r.t. position (0,0) and can be calculated as a ratio of sums of S2 LRFs in the following way:

$$C_{lc}(x,y) = \langle S2(0,0) \rangle / \langle S2(x,y) \rangle = \frac{\sum_{i} \lambda_{i}(0,0)}{\sum_{i} \lambda_{i}(x,y)} \qquad Functions \ per \ PMT$$

This correction is <u>dynamically adjustable as summation can be taken over any subset of PMTs</u> S2 calculated from the bottom PMTs

Continuous PMT gain monitoring

- Non-invasive technique developed for ZEPLIN
 - Monitoring based on the Poisson distribution
- The mean signal, μ , measured by a given PMT from an SE event
 - varies with the distance between the SE and the PMT
- Since the number of photons detected (phd) by a PMT follows a Poisson distribution, μ can be calculated from number of events that resulted in a null signal (below a given threshold)

$$egin{aligned} P(\mu,n) &= \mu^n e^{-\mu}/n! \ P(\mu,0) &= e^{-\mu} \Rightarrow \mu = ln(P_0) \ \sigma_\mu &= \sqrt{rac{1}{N_0} - rac{1}{N}} \end{aligned}$$

 $N = Total \ Number \ of \ events$

The PMT gain correction is the ratio between average SE area and μ

NEVES, F., et al. Calibration of photomultiplier arrays. *Astroparticle Physics*, 2010, 33.1: 13-18. arxiv link

- Improved Xe-127 208 keV and 380 keV (L shells) results
 - Takes into account unresolved contribution from the M-shell EC
 - Two summed gaussians with a fixed energy difference of 4.1 keV and relative contribution of 22%
 - \circ Improves results by 0.5 σ

The observed intensities of K-, L-, M-, and N-shell EC X-rays as fraction of parent 127Xe decays

2		Events	Amplitude	Expected (%)	Observed (%)
K	33.2 keV	2067	18200 ± 400	83.37	82.7 ± 2.4
L	5.2 keV	542	3090 ± 130	13.09	14.1 ± 0.7
Μ	1.1 keV	164	580 ± 50	2.88	2.6 ± 0.2
N	186 eV	31	133 ± 23	0.66	0.6 ± 0.1

Link: Xe-127 analysis in LUX

AKERIB, D. S., et al. Ultralow energy calibration of LUX detector using Xe 127 electron capture. *Physical Review D*, 2017, 96.11:

• Fit used to build a projection line in the following plot

Energy spectrum (Xe activation region)

Energy spectrum - High(er) region

