

The MicroRadon Project

José Busto

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France busto@cppm.in2p3.fr

XeSAT 2022

International Workshop on Applications of Noble Gas Xenon to Science and Technology

Physics Department, University of Coimbra 23 – 26 May 2022

Radon: Radioactive, Natural, Noble gas, produced in U and Th decay chain

²¹⁹Rn (3.96 s)

²²⁰Rn (55 s)

²²²Rn (3.82 d)

Origin of radon background

α	5 à 8 MeV
β	≤ 3.27 MeV
γ	≤ 2.20 MeV
Nucleus recoil	~ 100 keV
Neutron	(α,n) on light nucleus

Direct background

No radon => No background

Not corelated background

- Surface contamination
- History of materials

Radon contraints

LZ Dark Matter Experiment (Liquid Xe TPC)

Quentin Riffard - LBNL
GDR Deep Underground Physics - 31 Mai to 2 June 2021

The MicroRadon Projet

Master Projet of IN2P3
Start in January 2020 (with COVID)

Goal: study the fundamental mechanisms of radon background (emanation and transport) under severe or special experimental conditions. Develop new materials and capture techniques.

The MicroRadon Projet

Master Projet of IN2P3
Start in January 2020 (with COVID)

Goal: study the fundamental mechanisms of radon background (emanation and transport) under severe or special experimental conditions. Develop new materials and capture techniques.

Equipment and facilities

> Radon detection

AlphaGuard ($\sim 5 \text{ Bq/m}^3$)

Rad 7 ($\sim 5 \text{ Bq/m}^3$)

RadonEye ($^{\sim}10 \text{ Bq/m}^{3)}$

LUCAS cell (~20 Bq/m³)

> Radon emanation chamber

SuperNEMO, JUNO emanation in N₂

> Radon chamber

5 L, 25 kBq/m³ Temperature and %HR controled

30 L, 100 kBq/m³ + test chambre

Emanation studies in Ar, Xe, He,

Ethanol (20 to - 100°C)

Cu getter émanation for DUNE (20 to -90°C)

500 cm3

[20 to - 100 ° C] [10-3 to 20 bar

Gas Sampling

> Study of dynamical radon capture [+ 20 to − 80 °C]

Porous optimization for Rn adsorption in carbon adsorbents → SuperNEMO

> Radon diffusion (bi-)chamber

Radon diffusion of JUNO liner in air/water

μRτl

some preliminary results

☐ Adsorption **on silver** zeolite

Very high adsorption (K factor)

Huge Rn reduction in a column:

$$\rho \propto (2)^{\frac{m \cdot K}{\varphi \cdot T_{1/2}}}$$

☐ Adsorption **on pure** zeolite

Very high adsorption (K factor)

₩

Huge Rn reduction in a column:

$$\rho \propto (2)^{\frac{m \cdot K}{\varphi \cdot T_{1/2}}}$$

No Rn adsorption on pure zeolite

Very important effect of silver on radon adsorption

ETS-10 extraordinary adsorbent but, with very high dependence to water traces and little internal radioactivity

Optimisation of radon adsorption in porous materials v.s. the chemical composition should be further investigated

☐ Xenon / Radon adsorption selectivity with macromolecular cages : Cryptophane

- Used for xenon storage
- Tunable size of the cage
- => Xenon and Radon very close atomic radius $(\rho_{Xe} = 4.10 \text{ Å}, \rho_{Rn} = 4.17 \text{ Å})$
 - → purification of Xenon by gas chromatography is very challenging

Study radon and xenon adsorption on crytophanes

Adsorbent	Rn capture in N2 @ - 30°C	Xenon adsorption @ -30°C
Cryptophane A in MCM-41	107 m3/kg	0.11 mmol/g
Active charcoal K 48	180 m3/kg	2.31mmol/g

High selectivity for radon compare to classical active charcoals

=> highly promising Rn/ Xe selective materials

 \square Emanation in Xe Big amount of data emanation in N_2 , air, Ar,, but almost nothing in the Xe

Gas phase

Emanation in Xe ~ 1.7 x Emanation in Ar

To be confirmed with other gases and other Rn sources

depend on the texture, porosity, roughness, of the sources

Liquid phase

What is the effect of liquid phase on radon emanation?

- ➤ Available cryogenic system => 90°C
- => Study of liquid phase effect at -73° C at different pressures.

Liquid phase

What is the effect of liquid phase on radon emanation?

- ➤ Available cryogenic system => 90°C
- => Study of liquid phase effect at -73° C at different pressures.

<u>Several measures</u>:

- in gas phase @ 3 bar and 4 bar
- in liquid phase @ 7 bar

Radon emanation setup

Emanation in liquid phase Xe^{-x} 1. 4 x Emanation in gas phase

Very preliminary results (last week)

Conclusion

- MicroRadon is a general project for the study of radon in extreme or particular configurations.
- The very preliminary results obtained show the possibility of using much more efficient and highly selective adsorbents in the future.
- The first studies on emanation in gas and liquid xenon have just started.

Thank you for your attention

