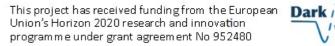
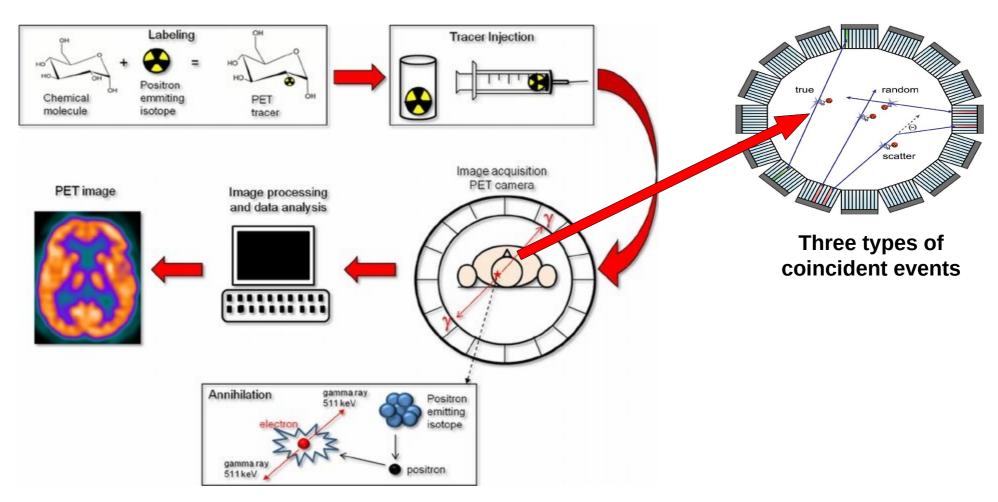
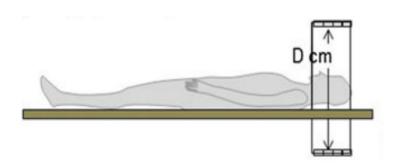
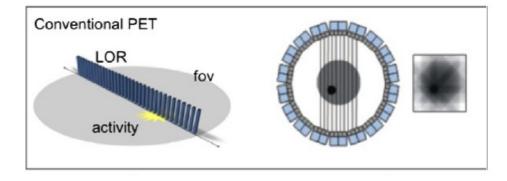


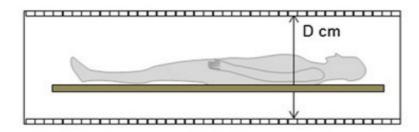
 $3D\pi$, A Total-Body Time of Flight Positron Emission Tomography scanner, using Xenon-doped Liquid detector

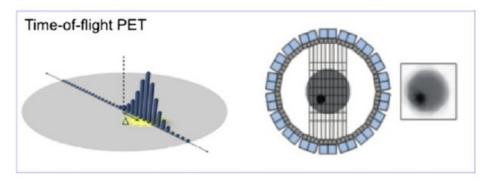

Azam Zabihi, ASTROCENT/CAMK-PAN, Warsaw, Poland (azabihi@camk.edu.pl) On behalf of the 3D π TB-TOF-PET Collaboration




What is Positron Emission Tomography (PET)? How does it Work?




 $Credit:\ https://www.researchgate.net/publication/262189675_PET_imaging_in_multiple_sclerosis$


Routine PET vs. Total-Body PET (TB-PET)

Conventional PET vs. Time of Flight (TOF) PET

Credit: https://iopscience.iop.org/article/10.1088/1748-0221/13/01/C01044

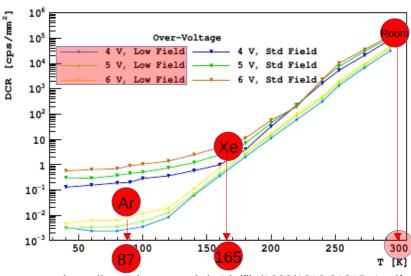
PET Detectors: Scintillation Material & Photo Detectors

Scintillator	Light Output (photons/MeV)	Decay time (ns)	Total Body Cost
LYSO	33,200	36	~\$ 10 million or more
BGO	8,000-10,000	300	~\$ 5 million or more
BC-480;EJ-200	10,000	2.1	~5 times less than the crystal- based

	Photomultiplier Tubes (PMTs)	Silicon Photomultipliers (SiPMs)
Range (nm)	300-800	400-1000+
Noise	Relatively low until the ~800nm mark, increases with voltage and higher emission wavelengths	Noisier than PMT except at ~800nm+, but comparable over whole range

Liquid Xenon vs. Liquid Argon

Liquid Scintillator is easier to scale up than a Crystals Scintillator

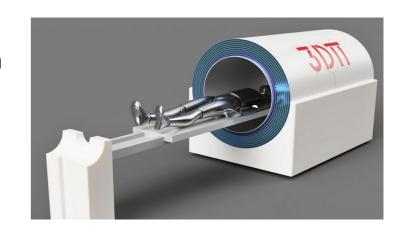

Property	Argon	Xenon
Fast decay time (ns)	7	4.3
Slow decay time (ns)	1600	22
Light yield (photons/keV)	40	42
Wavelength (nm)	128	175
Density at boiling temperature at 1 atm (g/cm ³)	1.40	2.94
Cost (US\$/kg)	~2	~2000
Boiling point	87 K	165 K

Credit: arXiv:1403.0525

Combine the advantages of both: Xenon-doped Liquid Argon

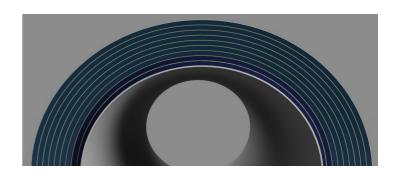
- ▼ The mixture emits scintillation light at a wavelength of 178 nm.
- ✓ It operates at temperatures close to the argon boiling point.
- ✓ Its triplet state decay time is shorter than
 the one of pure liquid argon.
- ✓ The de-excitation process in the mixture can be accomplished with direct energy transfer from argon excimers to xenon and direct emission of xenon light, it will be faster than the fluorescence processes of WLS.
- ✓ It has the potential to achieve subnanosecond timing resolution.

SiPM Dark Count Rate (DCR) vs. Temperature



https://oar.princeton.edu/rt4ds/file/1663/1610.01915v1.pdf

Our 3-Dimensional Positron Emission Tomography scanner (3DPi)


► A Total Body, Time of Flight PET scanner

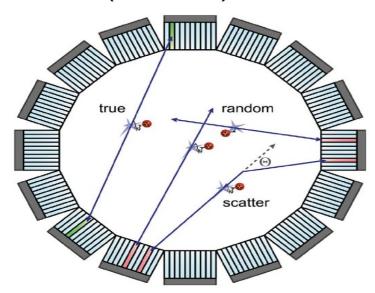
- More compact and more fine-grain photodetection
- Xenon Doped LAr scintillation
- Multiple layers

➢ Geometry

- 9 annulus detection rings
- Each ring has Liquid Argon sandwiched Between two layers of SiPMs
- 2 m in length

National Electrical Manufacturers Association, NEMA NU 2-2018

A guide to characterize PET performance


Noise Equivalent Count Rate (NECR)

$$\frac{T^2}{T+S+R}$$

S: Scattered coincidences count rate

R: Random (accidental) coincidences count rate

Three types of coincident events

https://www.nema.org/standards/view/Performance-Measurements-of-Positron-Emission-Tomographs

System Sensitivity

$$S_{tot} = \frac{R_0}{A_{cal}}$$

 S_{tot} =System Sensitivity R_0 =True coincidences count rate with no attenuation A_{cal} =Line source radioactivity

Current Results

Peak NECR

	Peak NECR
Our TB-PET (preliminary)	~10 ⁴ kcps
EXPLORER TB-PET/CT	~10³ kcps
GE SIGNA PET/CT	~200 kcps
CareMainBrain PET	~20 kcps

System Sensitivity

(preliminary)
Our Total-Body TOF-PET:
500 kcps/MBq

EXPLORER Total-Body PET/CT: 147 kcps/MBq

The preliminary results demonstrate that our scanner system performance is comparable to commercial scanners.

Ongoing activities

- ➤ Setup at INFN Cagliari, to test coincidence time resolution in the liquid argon-xenon mixture (Funding:300k€)
- Setup at Princeton to test stability of the Xe-doped LAr
- Agreement with Fondazione Bruno Kessler (FBK) to test their SiPM sensitive to Xe scintillation with ASIC

Current Collaboration

- Princeton University
- ASTROCENT
- University of Houston
- Lawrence Berkeley National Laboratory
- University of Cagliari
- INFN
- APC, University of Paris, CNRS
- Gran Sasso Science Institute

