The development of hermetic quartz chamber for future low background liquid xenon detectors

Masatoshi Kobayashi (Nagoya University) N.Aoyama, R.Harata, T.Hasegawa, Y.Itow, S.Kazama, S.Moriyama, Y.Takeuchi, M.Yamashita

> XeSAT 2022 2022.05.23-26 Coimbra University

Introduction: future DM direct detection with LXe

- Currently, world limit for WIMPs are achieved by liquid xenon detectors: **XENON1T** and PandaX-4T.
 - Achieved: 10-46 10-47 cm²
- Also larger scale detectors, XENONnT and LZ are running
 - Target: ~10-48 cm²
- For future DM search, G3 detector (DARWIN/LZ) is planned with ~50 tons.
 - Target: ~10⁻⁴⁹ cm²

Introduction: future DM direct detection with LXe

- Currently, world limit for WIMPs are achieved by liquid xenon detectors: **XENON1T** and PandaX-4T.
 - Achieved: 10-46 10-47 cm²
- Also larger scale detectors, XENONnT and LZ are running
 - Target: ~10⁻⁴⁸ cm²
- For future DM search, G3 detector (DARWIN) is planned with ~50 t.
 - Target: ~10⁻⁴⁹ cm²

• We need ~1/10 of XENONnT target level -> How to achieve?

Rn BG target for future detector

- Improvement by surface-volume ratio is not enough:
 - Additional Rn reduction is required !

Yamashita, Dark Matter searches in the 2020s at the crossroads of the WIMP

Hermetic Quartz TPC: Concepts

- To solve this issue, we are studying about Heretic Quartz TPC.
 - Fully Isolating the TPC volume using Quartz
 - VUV transparent quartz with low radio-activity
- Non-hermetic quartz TPC has been tested: PTEP, 2020, 113H02
 - Good performance as TPC
- Next step: fully hermetic TPC

Hermetic Quartz TPC: Concepts

Advantages

- Almost no Rn222 emanation
- Less O₂/H₂O outgassing
- Coating electrode (no sagging) -Dedicated study ongoing too

- How tightly can we close? - How to stabilize the detector?

R&D Steps

- 1. Characterization of sealing properties with Rnemanation detector and GN2
 - Flange, Gasket, Torque, Piping conditions vs Leak Rate
 - Rn-shielding test

2. Characterization with GXe & S1-only setup

Reproduce the results of step1 with Xenon

3. Rn shielding test with LXe TPC (~0.3 kg)

- Shielding performance in cryogenic temperature
- Detector stability (level, pressure...)
- Optimization of electrode design with COMSOL

1: Characterization of sealing properties with GN2

Acknowledgement: SCREEN SPE Quartz

Conditions of Quartz flange:

NPT screw or Branch-arm? Gasket thickness? With/Without spacer? **Torque?**

For TPC design:

- **Piping: NPT screw**
- **Gasket material: ePTFE**
- Gasket thickness: 0.5 [mm]
- Use PEEK spacer

But: How about Rn shielding vs Leak rate?

Vacuum leak rate vs Rn shielding

- 1L Rn detector developed by SuperK group
 - PTEP Volume 2018, Issue 9, Sep 2018, 093H01

- Measurement done with GN2
- Inner Rn concentration was measured
 - BG run: without Rn source outside Quartz
 - Rn run: with Rn source outside Quartz

11

Vacuum leak rate vs Rn shielding

@Torque 7.0 [N • m]: Leak rate: 1.7×10^{-8} [Pa · m³/s] R_{in/out}: $(1.39 \pm 0.03) \times 10^{-2}$

[s/_ε 8 ed 1.25 rate eg 0.75

2: Characterization with GXe & S1-only setup

Rn shielding with GXe detector

Analysis for Rn alpha signals

- Rn S1 spectrum was measured using Rn source
- Count alpha rates with S1, and compare the one outside Quartz Chamber
- The test is ongoing:
 - First test showed clear Rn alpha inside quartz
 - Estimated R: ~50%
 - Leak found at NPT screw, under investigation

Conclusions and future plans

- Hermetic quartz TPC: Rn reduction for future liquid xenon detectors
- Test of the quartz flange was performed and achieved:
 - Suppressing the Rn concentration to ~1.4%
- GXe run with small detector is ongoing:
 - Successfully manage to observe sufficient S1 signals with GXe S1-only setup
 - Difficulty with NPT screw: under investigation
- LXe run in this year
 - Run as S1 detector at first, then apply HV to test as TPC

• •

BACK UP

.

