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Preface

The following book is an introduction to the practical application of statistics in data
analysis as typically encountered in the physical sciences� and in particular in high
energy physics� Students entering this �eld do not usually go through a formal course
in probability and statistics� despite having been exposed to many other advanced
mathematical techniques� Statistical methods are invariably needed� however� in order to
extract meaningful information from experimental data�

The book originally developed out of work with graduate students in the ALEPH
collaboration at the European Organization for Nuclear Research �CERN�� It is primarily
aimed at graduate or advanced undergraduate students in the physical sciences engaged in
research or laboratory courses which involve data analysis� It is desirable that the reader
have access to a computer with mathematical and statistical program libraries �e�g� the
CERN libraries�� so as to be able to try out the various techniques� A number of the
methods are widely used in the physical sciences but less widely understood� and it is
therefore hoped that more advanced researchers can also pro�t from the material�

It is assumed that the reader has an understanding of linear algebra� multivariable
calculus and some knowledge of complex analysis� This is essentially always the case for
students in physics� engineering and other physical sciences� and thus the book should
pose no serious di�culties in terms of assumed prior knowledge� Roughly speaking� the
present book is somewhat less theoretically oriented than that of Eadie et al�� �Ead��	�
and somewhat more so than those of Lyons �Lyo
�	 and Barlow �Bar
�	�

An attempt has been made to present the most important concepts and tools in
a manageably short space� As a consequence� many results are given without proof
and the reader is often referred to the literature for more detailed explanations� It is
thus considerably more compact than several other works on similar topics� e�g� those by
Brandt �Bra�	 and Frodeson et al� �Fro��	� Most chapters employ concepts introduced
in previous ones� Since the book is relatively short� however� it is hoped that readers will
look at least brie�y at the earlier chapters before skipping to the topic needed�

The bulk of the material here was presented as a half�semester course at the University
of Siegen in ����� Given the material added since then� most of the book could be covered
in � to �� one�hour lectures� A major problem concerning use as a textbook is the
question of exercises� since to be realistic these require a computer� Although no exercises
are presented here� the reader interested in practicing the techniques is encouraged to
implement the examples on a computer� By modifying the various parameters and the



input data� one can gain experience with the methods presented� This is particularly
instructive in conjunction with the Monte Carlo method �Chapter ��� which allows one
to generate simulated data sets with known properties� These can then be used as input
for the various statistical techniques�

The topics include basic aspects of probability and statistical inference� Monte Carlo
techniques� statistical tests� and methods of parameter estimation� The concept of
probability plays� of course� a fundamental role� In addition to the interpretation of
probability as a relative frequency as used in classical statistics� the Bayesian approach
using subjective probability is discussed as well� Although the frequency interpretation
tends to dominate in most of the commonly applied methods� it was felt that certain
applications can be better handled with Bayesian statistics� and that a brief discussion of
this approach was therefore justi�ed�

The important topic of numerical minimization is not treated� since computer routines
that perform this task are widely available in program libraries� Also omitted are
techniques that are widely used in the biological sciences and economics� such as analysis
of variance and time series analysis� since these are not as often applicable to problems
encountered in the physical sciences�

In the last chapter�� a number of examples are presented which demonstrate various
concepts developed throughout the book� This chapter also includes a discussion of
practical considerations that must be dealt with in a �real� data analysis� such as
systematic and theoretical errors� data reduction� and ease of implementation of a method�

�In preparation�
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Chapter �

Fundamental Concepts

��� Probability and Random Variables

The aim of this book is to present the most important concepts and methods used in
data analysis� Among these concepts� uncertainty plays a central role� since this is
inevitably present in experimentally obtained information� For example� one is often
faced with a situation where the outcome of a repeated measurement varies unpredictably
upon repetition of the experiment� Such behaviour can stem from errors related to
the measuring device� or it could be the result of a more fundamental �e�g� quantum
mechanical� unpredictability inherent to the system� The uncertainty might stem from
various undetermined factors which in principle could be known but in fact are not� A
characteristic of a system is said to be random when some hypothesis concerning its nature
is not known with complete certainty�

The degree of randomness can be quanti�ed with the concept of probability� The
mathematical theory of probability has a history dating back at least to the ��th century�
and several di�erent de�nitions of probability have been developed� We will use the
de�nition in terms of set theory as formulated in ���� by Kolmogorov �Kol��	� Consider a
set S called the sample space consisting of a certain number of elements� the interpretation
of which is left open for the moment� To each subset A of S one assigns a real number
P �A� called a probability� de�ned by the following three axioms�

��� For every subset A in S� P �A� � ��

�� For any two subsets A and B that are disjoint �i�e� mutually exclusive� A � B � ��
the probability assigned to the union of A and B is the sum of the two corresponding
probabilities� P �A �B� � P �A� � P �B��

��� The probability assigned to the sample space is one� P �S� � ��

From these axioms further properties of probability functions can be derived� e�g�

�



P �A� � � � P �A� where A is the complement of A
P �A �A� � �
� � P �A� � �
P ��� � �
if A � B� then P �A� � P �B�
P �A �B� � P �A� � P �B�� P �A � B�

�����

For proofs and further properties see e�g� �Bra�� Dud

	�

A variable that takes on a speci�c value for each element of the set S is called a random
variable� The individual elements may each be characterized by several quantities� in
which case the random variable is a multidimensional vector�

Suppose one has a sample space S which contains subsets A and B� Provided P �B� �� �
one de�nes the conditional probability P �AjB� �read P of A given B� as

P �AjB� �
P �A �B�

P �B�
� ����

Figure ��� shows the relationship between the sets A� B and S� One can easily show that
conditional probabilities themselves satisfy the axioms of probability� both with S as well
as with the subset B taken as the sample space� Note that the usual probability P �A�
can be regarded as the conditional probability for A given S� P �A� � P �AjS��

S

A

B

A ∩ B

Figure ���� Relationship between the

sets A� B and S in the de�nition of

conditional probability�

Two subsets A and B are said to be independent if

P �A � B� � P �A�P �B� � �����

For A and B independent� it follows from the de�nition of conditional probability that
P �AjB� � P �A� and P �BjA� � P �B�� �Do not confuse independent subsets according to
����� with disjoint subsets� i�e� A �B � ���

From the de�nition of conditional probability one also has the probability of B given
A �assuming P �A� �� ��

P �BjA� �
P �B �A�

P �A�
� �����






Since A �B is the same as B �A� by combining equations ���� and ����� one has

P �B �A� � P �AjB�P �B� � P �BjA�P �A� � �����

or�

P �AjB� �
P �BjA�P �A�

P �B�
� �����

Equation ����� relating the conditional probabilities P �AjB� and P �BjA� is called Bayes�

theorem �Bay��	�

Suppose the sample space S can be broken into disjoint subsets Ai� i�e� S � �iAi with
Ai � Aj � � for i �� j� Assume further that P �Ai� �� � for all i� An arbitrary subset B
can be expressed as B � B � S � B � ��iAi� � �i�B �Ai�� Since the subsets B �Ai are
disjoint� their probabilities add� giving

P �B� � P ��i�B �Ai�� �
X
i

P �B �Ai� �����

�
X
i

P �BjAi�P �Ai� �

The last line comes from the de�nition ����� for the case A � Ai� This expression for
the probability is useful if one can break the sample space into subsets Ai for which the
probabilities are easy to calculate� It is often used with Bayes� theorem ����� to give

P �AjB� �
P �BjA�P �A�P
i P �BjAi�P �Ai�

� ���
�

Here A can be any subset of S� including e�g� one of the Ai�

As an example� consider a disease which is known to be carried by ���� of the
population� i�e� the prior probabilities to have the disease or not are

P �disease� � ����� �

P �no disease� � ����� �

A test is developed which yields a positive result with a probability of �
� given that the
person carries the disease� i�e�

P ��jdisease� � ���
 �

P ��jdisease� � ��� �

�



Suppose there is also a �� probability� however� to obtain a positive result for a person
without the disease�

P ��jno disease� � ���� �

P ��jno disease� � ���� �

Suppose your test result is positive� What is the probability that you have the disease�
According to Bayes� theorem �equation ���
�� this is given by

P �diseasej�� �
P ��jdisease�P �disease�

P ��jdisease�P �disease� � P ��jno disease�P �no disease�

�
���
 � �����

���
� ����� � ���� � �����

� ���� �

The probability that you have the disease given a positive test result is only ����
This may be surprising� since the probability of having a wrong result is only � if you
carry the disease and �� if you do not� But the prior probability is extremely low� �����
which leads to a posterior probability of only ���� An important point that we have
skipped over up to now is what it really means when we say P �diseasej�� � ����� i�e�
how exactly the probability should be interpreted� This question is examined in the next
section�

��� Interpretation of Probability

Although any function satisfying the axioms above can be called by de�nition a
probability function� one must still specify how to interpret the set elements and how
to assign and interpret the probability values� There are two main interpretations of
probability commonly used in data analysis� The most important is that of relative
frequency� used among other things for assigning statistical errors to measurements�
Another interpretation called subjective probability is also used� however� e�g� to quantify
systematic uncertainties� These two interpretations are described in more detail below�

Probability as a Relative Frequency

In data analysis� probability is most commonly interpreted as a limiting relative frequency�
Here the elements of the set S correspond to the possible outcomes of a measurement�
assumed to be �at least hypothetically� repeatable� A subset A of S corresponds to the

��



occurrence of any of the outcomes in the subset� Such a subset is called an event� which
is said to occur if the outcome of a measurement is in the subset�

A subset of S consisting of only one element denotes a single elementary outcome�
One assigns for the probability of an elementary outcome A the fraction of times that A
occurs in the limit that the measurement is repeated an in�nite number of times�

P �A� � lim
n��

number of occurrences of outcome A in n measurements

n
� �����

The probabilities for the occurrence of any out of a set of outcomes �i�e� for a non�
elementary subset A� are determined from those for individual outcomes by the addition
rule given in the axioms of probability� These correspond in turn to relative frequencies
of occurrence�

The relative frequency interpretation is clearly consistent with the axioms of
probability� since the fraction of occurrences is always greater than or equal to zero�
the frequency of any out of a set of independent outcomes is the sum of the individual
frequencies� and the measurement must by de�nition yield some outcome �i�e� P �S� � ���
The conditional probability P �AjB� is thus the number of cases where both A and B
occur divided by the number of cases in which B occurs� regardless of whether A occurs�
That is� P �AjB� gives the frequency of A with the subset B taken as the sample space�

Clearly the probabilities based on such a model can never be determined
experimentallywith perfect precision� The basic tasks of classical statistics are to estimate
the probabilities �assumed to have some de�nite but unknown values� given a �nite
amount of experimental data� and to test to what extent a particular model or theory
that predicts probabilities is compatible with the observed data�

The relative frequency interpretation is straightforward when studying physical laws�
which are assumed to act the same way in repeated experiments� The validity of
the assigned probability values can be experimentally tested� The concept of relative
frequency is more problematic for unique phenomena such as the Big Bang� or for the
probability that the billionth digit of � is a �� In such cases the repeatability must be
regarded as an idealized property of the model only� not of the system it is supposed to
describe�

Subjective Probability

Another probability interpretation is that of subjective �also called Bayesian� probability�
Here the elements of the sample space� correspond to hypotheses or propositions� i�e�
statements that are either true or false� One interprets the probability associated with a
hypothesis as a measure of degree of belief�

�When using subjective probability the sample space is often called the hypothesis space�

��



P �A� � degree of belief that hypothesis A is true � ������

The sample space S must be constructed such that the elementary hypotheses are
mutually exclusive� i�e� only one of them is true� A subset consisting of more than one
hypothesis is true if any of the hypotheses in the subset is true� That is� the union of sets
corresponds to the Boolean or operation and the intersection corresponds to and� One of
the hypotheses must necessarily be true� i�e� P �S� � ��

The statement that a measurement will yield a given outcome a certain fraction of the
time can be regarded as a hypothesis� so the framework of subjective probability includes
the relative frequency interpretation� In addition� however� subjective probability can be
associated with� for example� the value of an unknown constant� re�ecting one�s con�dence
that its value lies in a certain �xed interval� A probability for an unknown constant is not
meaningful with the limiting frequency interpretation� since if one repeats an experiment
depending on a physical parameter whose exact value is not certain �e�g� the mass of the
electron� its value is either never or always in a given �xed interval� The corresponding
probability would be either zero or one� but it is not known which� With subjective
probability� however� a probability of ��� that the electron mass is contained in a given
interval is a re�ection of one�s state of knowledge�

The use of subjective probability is closely related to Bayes� theorem and forms the
basis of Bayesian �as opposed to classical� statistics� Consider again the probability to
have a disease given a positive test result� From the standpoint of someone studying a
large number of potential carriers of the disease� the probabilities in this problem can
be interpreted as relative frequencies� The prior probability P �disease� is the overall
fraction of people who carry the disease� and the posterior probability P �diseasej�� gives
the fraction of people with a positive test result who are carriers� A central problem
of classical statistics is to estimate the probabilities that are assumed to describe the
population as a whole by examining a �nite sample of data� e�g� a subsample of the
population�

A speci�c individual� however� may be interested in the subjective probability that he
or she has the disease given a positive test result� If no other information is available�
one would usually take the prior probability P �disease� to be equal to the overall fraction
of carriers� i�e� the same as in the relative frequency interpretation� Here� however� it
is taken to mean the degree of belief that one has the disease before taking the test� If
other information is available� di�erent prior probabilities could be assigned� this aspect of
Bayesian statistics is� as the name implies� subjective� Once P �disease� has been assigned�
however� Bayes� theorem then tells how the probability to have the disease� i�e� the degree
of belief in this hypothesis� changes in light of a positive test result� The use of subjective
probability is discussed further in Sections ��
 and ����

�



��� Probability Density Functions

Consider a repeatable experiment whose outcome is characterized by a single continuous
variable x� The sample space corresponds to the set of possible values that x can assume�
and one can ask for the probability of observing a value within an in�nitesimal interval
�x� x� dx	�� This is given by the probability density function �p�d�f�� f�x��

probability that x observed in the interval �x� x� dx	 � f�x�dx � ������

In the relative frequency interpretation� f�x�dx gives the fraction of times that x is
observed in the interval �x� x� dx	 in the limit that the total number of observations is
in�nitely large� The p�d�f� f�x� is normalized such that the total probability �probability
of some outcome� is one�

Z
�
f�x�dx � � � �����

where the region of integration � refers to the entire range of x� i�e� to the entire sample
space�

Although �nite data samples will be dealt with more thoroughly in Chapter �� it
is illustrative here to point out the relationship between a p�d�f� f�x� and a set of n
observations of x� x�� � � � � xn� A set of such observations can be displayed graphically
as a histogram as shown in Fig� ��� The x axis of the histogram is divided into m
subintervals or bins of width �xi� i � �� � � � �m� where �xi is usually but not necessarily
the same for each bin� The number of occurrences ki of x in subinterval i� i�e� the
number of entries in the bin� is given on the vertical axis� The area under the histogram
is equal to the total number of entries n multiplied by �x �or for unequal bin widths�
area �

Pm
i�� ki 	 �xi�� Thus the histogram can be normalized to unit area by dividing

each ki by the corresponding bin width �xi and by the total number of entries in the
histogram n� The p�d�f� f�x� corresponds to a histogram of x normalized to unit area in
the limit of zero bin width and an in�nitely large total number of entries� as illustrated
in Fig� ���d��

One can consider cases where the variable x only takes on discrete values xi� for
i � �� � � � � N � where N can be in�nite� The corresponding probabilities can be expressed
as

probability to observe value xi � P �xi� � fi � ������

where i � �� � � � � N and the normalization condition is

�A possible confusion can arise from the notation used here� since x refers both to the random variable
and also to a value that can be assumed by the variable� Many authors use upper case for the random
variable� and lower case for the value� i�e� one speaks of X taking on a value in the interval �x� x� dx��
This notation is avoided here for simplicity� the distinction between variables and their values should be
clear from context�

��



Figure ��� Histograms of various numbers of observations of a random variable x based on the same
p�d�f� �a� n 	 
�� observations and a bin width of �x 	 ��� �b� n 	 
��� observations� �x 	 ����

�c� n 	 
���� observations� �x 	 ��
� �d� The same histogram as in �c�� but normalized to unit area�

Also shown as a smooth curve is the p�d�f� according to which the observations are distributed� For �a�c��

the vertical axis N �x� gives the number of entries in a bin containing x� For �d�� the vertical axis is

f�x� 	 N�x�
n�x

�

��



NX
i��

fi � � � ������

Although most of the examples in the following are done with continuous variables� the
transformation to the discrete case is a straightforward correspondence between integrals
and sums�

The cumulative distribution F �x� is given in terms of the p�d�f� f�x� as

F �x� �
Z x

��
f�x��dx� � ������

i�e� F �x� is the probability for the random variable to take on a value less than or equal
to x�� In fact� F �x� is usually de�ned as the probability to obtain an outcome less than
or equal to x� and the p�d�f� f�x� is then de�ned as �F��x� For the �well�behaved�
distributions �i�e� F �x� everywhere di�erentiable� typically encountered in data analysis
the two approaches are equivalent� Figure ��� illustrates the relationship between the
probability density f�x� and the cumulative distribution F �x��

Figure ���� �a� A probability density

function f�x�� �b� The corresponding

cumulative distribution function F �x��

For a discrete random variable xi with probabilities P �xi� the cumulative distribution
is de�ned to be the probability to observe values less than or equal to the value x�

�Mathematicians call F �x� the �distribution� function� while physicists often use the word distribution
to refer to the probability density function� To avoid confusion we will use the terms cumulative
distribution and probability density �or p�d�f���

��



F �x� �
X
xi�x

P �xi� � ������

A useful concept related to the cumulative distribution is the so�called quantile of

order � or ��point� The quantile x� is de�ned as the value of the random variable x such
that F �x�� � �� with � � � � �� That is� the quantile is simply the inverse function of
the cumulative distribution�

x� � F����� � ������

A commonly used special case is x���� called the median of x�

Consider now the case where the result of a measurement is characterized not by one
but by several quantities� which may be regarded as a multidimensional random vector�
If one is studying people� for example� one might measure for each person their height�
weight� age� etc� Suppose a measurement is characterized by two continuous random
variables x and y� The joint p�d�f� f�x� y� is de�ned by

probability of x in �x� x� dx	 and y in �y� y� dy	 � f�x� y�dxdy � ����
�

Since x and y must take on some values� one has

Z Z
�
f�x� y�dxdy � � � ������

Speaking again in terms of sets as in Section ���� let the event A be �x observed in
�x� x� dx	� and let B be �y in �y� y � dy	�� One then has f�x� y�dxdy � P �A � B�� In
the relative frequency interpretation of probability� f�x� y� corresponds to the density of
points on a scatter plot of x and y in the limit of in�nitely many points� as shown in
Fig� ����

Figure ���� A scatter plot of two

random variables x and y based on 
���

observations� The probability for a point

to be in the square shown at �x� y� is given

by the joint p�d�f� times the area element�

f�x� y�dxdy�

��



Suppose the x axis is broken into intervals of width dx labeled by the index i� Let
event Ai correspond to observing x in the interval i� and let B refer to observing y in a
given interval �y� y� dy	� i�e� P �Ai �B� � f�xi� y�dxdy� Since the events Ai are mutually
exclusive� by summing over all intervals i one obtains

P �B� �
X
i

P �Ai � B� � fy�y�dy �����

for the probability of observing the probability of y in �y� y � dy	 regardless of the value
of x� The function fy�y� is called the marginal p�d�f� for y and is related to the joint p�d�f�
by

fy�y� �
Z �

��
f�x� y�dx � �����

This corresponds to the normalized histogram of y obtained by projecting a scatter plot
of x and y onto the y axis� Similarly� one obtains the marginal p�d�f� fx�x� by integrating
f�x� y� over y� The relationship between the marginal and joint p�d�f��s are illustrated in
Fig� ����

From the de�nition of conditional probability ����� the probability for y to be in
�y� y � dy	 �event A� given that x is in �x� x� dx	 �event B� is�

P �AjB� �
P �A � B�

P �B�
�

f�x� y�dxdy

fx�x�dx
� ����

The conditional p�d�f� for y given x� h�yjx�� is thus de�ned as

h�yjx� � f�x� y�

fx�x�
� �����

This corresponds to the normalized histogram of y obtained from the projection onto the y
axis of a thin band in x �i�e� with in�nitesimal width dx� from an �x� y��scatter plot� This
is illustrated in Fig� ��� for two values of x� leading to two di�erent conditional p�d�f��s�
h�yjx�� and h�yjx��� Note that h�yjx�� and h�yjx�� in Fig� ����b� are both normalized to
unit area� as required by the de�nition of a probability density�

Similarly� the conditional p�d�f� for x given y is

g�xjy� � f�x� y�

fy�y�
� �����

Combining equations ����� and ����� gives the relationship between g�xjy� and h�yjx��

g�xjy� � h�yjx�fx�x�
fy�y�

� �����

��



Figure ���� �a� The density of points on the scatter plot is given by the joint p�d�f� f�x� y�� �b�

Normalized histogram from projecting the points onto the y axis with the corresponding marginal p�d�f�

fy�y�� �c� Projection onto the x axis giving fx�x��

�




Figure ���� �a� A scatter plot of random variables x and y indicating two in�nitesimal bands in x

with width dx at x� �solid band� and x� �dashed band�� �b� The conditional p�d�f��s h�yjx�� and h�yjx��
corresponding to the projections of the bands onto the y axis�

which is Bayes� theorem for the case of continuous variables �cf� equation �������

By using f�x� y� � h�yjx� fx�x� � g�xjy� fy�y�� one can express the marginal p�d�f��s
as

fx�x� �
Z �

��
g�xjy�fy�y�dy �����

fy�y� �
Z �

��
h�yjx�fx�x�dx �

These correspond to the expansion of P �B� given by equation ������ generalized to the
case of continuous random variables�

If �x in �x� x � dx	� �event A� and �y in �y � dy	� �event B� are independent� i�e�
P �A �B� � P �A�P �B�� then the corresponding joint p�d�f� for x and y factorizes�

f�x� y� � fx�x� fy�y� � �����

From equations ����� and ����� one sees that for independent random variables x and
y the conditional p�d�f� g�xjy� is the same for all y� and similarly h�yjx� does not depend
on x� In other words� having knowledge of one of the variables does not change the
probabilities for the other� The variables x and y shown in Fig� ���� for example� are not
independent� as can be seen from the fact that h�yjx� depends on x�

��



��� Functions of Random Variables

Functions of random variables are themselves random variables� Suppose a�x� is a
continuous function of a continuous random variable x� where x is distributed according
to the p�d�f� f�x�� What is the p�d�f� g�a� that describes the distribution of a� This is
determined by requiring that the probability for x to occur between x and x�dx be equal
to the probability for a to be between a and a� da� That is�

g�a��da� �
Z
d�
f�x�dx � ���
�

where the integral is carried out over the in�nitesimal volume element d� de�ned by the
region in x�space between a�x� � a� and a�x� � a� � da�� as shown in Fig� ����a�� If the
function a�x� can be inverted to obtain x�a�� equation ���
� gives

g�a�da �

�����
Z x�a�da�

x�a�
f�x��dx�

����� �
Z x�a��j dxda jda
x�a�

f�x��dx� � �����

or

g�a� � f�x�a��

�����dxda
����� � ������

The absolute value of dx�da insures that the integral is positive� If the function a�x�
does not have a unique inverse� one must include in d� contributions from all regions in
x�space between a�x� � a� and a�x� � a� � da�� as shown in Fig� ����b��

Figure ���� Transformation of variables for �a� a function a�x� with a single valued inverse x�a� and

�b� a function for which the interval da corresponds to two intervals dx� and dx��

�



The p�d�f� g�a� of a function a�x�� � � � � xn� of n random variables x�� � � � � xn with the
joint p�d�f� f�x�� � � � � xn� is determined by

g�a��da� �
Z
	 	 	

Z
d�
f�x�� � � � � xn�dx� 	 	 	 � dxn � ������

where the in�nitesimal volume element d� is the region in x�� � � � � xn�space between the
two �hyper�surfaces de�ned by a�x�� � � � � xn� � a� and a�x�� � � � � xn� � a� � da��

Figure ��
� The region of integration
d� contained between the two curves

xy 	 z and xy 	 z � dz� Occurrence

of �x� y� values between the two curves

results in occurrence of z values in the

corresponding interval �z� z � dz��

As an example of this technique� consider two independent random variables� x and
y� distributed according to g�x� and h�y�� and suppose we would like to �nd the p�d�f� of
their product z � xy� Since x and y are assumed to be independent� their joint p�d�f� is
given by g�x�h�y�� Equation ������ then gives for the p�d�f� of z� f�z��

f�z�dz �
Z Z

d�
g�x�h�y�dxdy �

Z �

��
g�x�dx

Z �z�dz��x

z�x
h�y�dy � �����

where d� is given by the region between xy � z and xy � z � dz� as shown in Fig ��
�
This yields

f�z� �
Z �

��
g�x�h�z�x�

dx

x
������

�
Z �

��
g�z�y�h�y�

dy

y
�

where the second equivalent expression is obtained by reversing the order of integration�
Equation ������ is often written f � g 
 h� and the function f is called the Mellin

convolution of g and h�

�



Similarly� the p�d�f� f�z� of the sum of two random variables z � x� y is found to be

f�z� �
Z �

��
g�x�h�z � x�dx ������

�
Z �

��
g�z � y�h�y�dy �

Equation ������ is also often written f � g 
 h� and f is called the Fourier convolution

of g and h� In most cases the names Fourier and Mellin are dropped and one must infer
from context what kind of convolution is meant�

Another technique for determining the p�d�f� of a function of random variables is the
following� Given n random variables x�� � � � � xn one can form n linearly independent
functions ai�x�� � � � � xn�� i � �� � � � � n� Assuming the functions a�� � � � � an can be inverted
to give xi�a�� � � � � an�� i � �� � � � � n� the joint p�d�f� for the ai is given by

g�a�� � � � � an� � f�x�� � � � � xn�jJ j � ������

where jJ j is the absolute value of the Jacobian determinant for the transformation�

J �

�����������

�x�
�a�

�x�
�a�

� � � �x�
�an

�x�
�a�

�x�
�a�

� � � �x�
�an

���
���

� � � �xn
�an

�����������
� ������

In this procedure one maps n variables x�� � � � � xn onto n functions� a�� � � � � an� for which
the joint p�d�f� is obtained� To determine the marginal p�d�f� for one of the functions �say
g��a��� the joint p�d�f� g�a�� � � � � an� must be integrated over the remaining ai�

In many cases the techniques given above are too di�cult to solve analytically� For
example� if one is interested in a single function of n random variables� where n is some
large and itself possibly variable number� it is rarely practical to come up with n � �
additional functions and then integrate the transformed joint p�d�f� over the unwanted
ones� In such cases a numerical solution can usually be found using the Monte Carlo
techniques discussed in Chapter �� If only the mean and variance of a function are needed�
the so�called �error propagation� procedures described in Section ��� can be applied�

For certain cases the p�d�f� of a function of random variables can be found using integral
transform techniques� speci�cally� Fourier transforms of the p�d�f��s for sums of random
variables and Mellin transforms for products� The basic idea is to take the Mellin or
Fourier transform of equation ������ or ������ respectively� The equation f � g 
 h is
then converted into the product of the transformed density functions�  f �  g 	  h� The
p�d�f� f is obtained by �nding the inverse transform of  f � A complete discussion of these
methods is beyond the scope of this book� see e�g� reference �Spr��	� An example of a sum
of random variables using Fourier transforms is given in Chapter ���





��� Expectation Values

The expectation value E�x	 of a random variable x distributed according to the p�d�f� f�x�
is de�ned as

E�x	 �
Z �

��
xf�x�dx � � � ������

The expectation value of x �also called the population mean or simply the mean of x� is
often denoted by �� Since f�x�dx is the fraction of measurements with x in �x� x� dx	�
E�x	 is the average value �arithemetic mean� of x one would obtain after in�nitely many
measurements� Note that E�x	 is not a function of x� but depends rather on the form of
the p�d�f� f�x�� For a function a�x�� the expectation value is

E�a	 �
Z �

��
ag�a�da �

Z �

��
a�x�f�x�dx � ����
�

The second integral is equivalent as can be seen by multiplying both sides of equation
���
� by a and extending the region of integration to cover the entire space� The
expectation value E�a�x�	 is not a function of x� but depends on the functional form
of a�x� and the p�d�f� f�x��

Some more expectation values of interest are�

E�xn	 �
Z �

��
xnf�x�dx � ��n � ������

called the nth algebraic moment of x� for which � � ��� is a special case� and

E��x� E�x	�n	 �
Z �

��
�x� ��nf�x�dx � �n � ������

called the nth central moment of x� In particular� the second central moment�

E��x�E�x	��	 �
Z �

��
�x� ���f�x�dx � �� � V �x	 � ������

is called the population variance �or simply the variance� of x� written �� or V �x	� Note
that E��x� E�x	��	 � E�x�	 � ��� The variance is a measure of how widely x is spread
about its mean value� The square root of the variance � is called the standard deviation

of x� which is often useful because it has the same dimension as x�

For the case of a function of more than one random variable� e�g� a�x�� � � � � xn� the
expectation value is

E�a�x�� � � � � xn�	 �
Z �

��
ag�a�da �����

�
Z �

��
	 	 	

Z �

��
a�x�� � � � � xn�f�x�� � � � � xn�dx� 	 	 	 dxn � �a �

�



where g�a� is the p�d�f� for a and f�x�� � � � � xn� is the joint p�d�f� for x�� � � � � xn� In the
following the notation �a � E�a	 will often be used� As in the single variable case the two
integrals in ����� are equivalent� as can be seen by multiplying both sides of equation
������ by a and extending the regions of integration to cover the entire space� The variance
of a is

V �a	 � E��a� �a�
�	 �

Z �

��
	 	 	

Z �

��
�a�x�� � � � � xn�� �a�

�f�x�� � � � � xn�dx� 	 	 	 dxn � ��
a �

������

and is denoted by ��
a or V �a	� The covariance of two random variables x and y is de�ned

as

Vxy � E��x� �x��y � �y�	 � E�xy	� �x�y ������

�
Z �

��

Z �

��
x y f�x� y� dx dy � �x�y �

where �x � E�x	 and �y � E�y	� More generally� for two functions of n random variables
a�x�� � � � � xn� and b�x�� � � � � xn� the covariance Vab is given by

Vab � E��a� �a��b� �b�	 ������

� E�ab	� �a�b

�
Z �

��

Z �

��
a b g�a� b� da db � �a�b

�
Z �

��
	 	 	

Z �

��
a�x�� � � � � xn� b�x�� � � � � xn� f�x�� � � � � xn�dx� 	 	 	 dxn � �a�b �

where g�a� b� is the joint p�d�f� for a and b and f�x�� � � � � xn� is the joint p�d�f� for the xi�
As in equation ������ the two integral expressions for Vab are equivalent� Note that by
construction the covariance matrix Vab �sometimes called the error matrix� is symmetric
in a and b and that the diagonal elements Vaa � ��

a �i�e� the variances� are positive� Vab
is sometimes denoted by cov�a� b	�

In order to give a dimensionless measure of the level of correlation between two random
variables x and y� one often uses the correlation coe�cient� de�ned by

	xy �
Vxy
�x�y

� ������

It can be shown �see e�g� �Fro��	� �Bra�	� that the correlation coe�cient lies in the range
�� � 	xy � ��

One can roughly understand the covariance of two random variables x and y in the
following way� Vxy is the expectation value of �x � �x��y � �y�� the product of the

�



deviations of x and y from their means� �x and �y� Suppose that whenever x is observed
to be greater than �x one has an enhanced probability for y also to be greater than �y�
and x less than �x gives an enhanced probability to have y less than �y� Then Vxy is
clearly greater than zero� and the variables are said to be positively correlated� Such a
situation is illustrated in Fig� ��� �a�� �c� and �d�� for which the correlation coe�cients
	xy are ����� ���� and ��� respectively� Similarly� Vxy 
 � is called a negative correlation�
having x � �x increases the probability to observe y 
 �y� An example is shown in
Fig� ����b�� for which 	xy � ������

Figure ���� Scatter plots of random variables x and y with �a� a positive correlation� � 	 ���� �b� a
negative correlation� � 	 ����� �c� � 	 ���� and �d� � 	 ���� For all four cases the standard deviations
of x and y are �x 	 �y 	 
�

From equations ������ ������ and ����� one sees that for independent random
variables x and y one has

E�xy	 � E�x	E�y	 � �x�y ������

�and hence by equation ������ Vxy � �� although the converse is not necessarily true�

�



Figure ����� Scatter plot of random

variables x and y which are not

independent �i�e� f�x� y� �	 fx�x�fy�y��

but for which Vxy 	 � because of the

particular symmetry of the distribution�

Figure ����� for example� shows a two�dimensional scatter plot of a p�d�f� for which Vxy � ��
but where x and y are not independent� That is� f�x� y� does not factorize according to
equation ������ and hence knowledge of one of the variables a�ects the conditional p�d�f�
of the other� The covariance Vxy vanishes� however� because f�x� y� is symmetric in x
about the mean �x�

��� Error Propagation

Suppose one has a set of n random variables �x � �x�� � � � � xn� distributed according to
some joint p�d�f� f��x�� Suppose that the p�d�f� is not completely known� but the mean
values of the xi� �� � ���� � � � � �n� and the covariance matrix� Vij are known or have at
least been estimated� �Methods for doing this are described in Chapters � ! 
��

Now consider a function of the n random variables a��x�� To determine the p�d�f�
for a� one must in principle follow a procedure such as those described in Section ���
�e�g� equations ������ or �������� We have assumed� however� that f��x� is not completely
known� only the means �� and the covariance matrix Vij � so this is not possible� One can�
however� approximate the expectation value of a and the variance V �a	 by �rst expanding
the function a��x� to �rst order about the mean values of the xi �assumed known��

a��x� � a���� �
nX
i��

�
�a

�xi

�
�x���

�xi � �i� � ����
�

The expectation value of a is to �rst order

E�a��x�	 � a���� � ������

since E�xi � �i	 � �� The expectation value of a� is

�



E�a���x�	 � a����� � a���� 	
nX
i��

�
�a

�xi

�
�x���

E�xi � �i	

� E

���� nX
i��

�
�a

�xi

�
�x���

�xi � �i�

�A�� nX
j��

�
�a

�xj

�
�x���

�xj � �j�

�A�	
� a����� �

nX
i�j��

�
�a

�xi

�a

�xj

�
�x���

Vij � ������

so that the variance V �a	 � E�a�	� �E�a	�� is given by

V �a��x�	 �
nX

i�j��

�
�a

�xi

�a

�xj

�
�x���

Vij � ������

Similarly� one obtains for the covariance of two functions a��x� and b��x�

Vab �
nX

i�j��

�
�a

�xi

�b

�xj

�
�x���

Vij � �����

Equations ������ and ����� form the basis of error propagation �i�e� the variances� which
are used as measures of statistical errors� are propagated from the xi to the functions a�
b� etc��� For the case where the xi are not correlated� that is� Vii � ��

i and Vij � � for
i �� j� equations ������ and ����� become

V �a��x�	 � ��
a �

nX
i��

�
�a

�xi

��
�x���

��
i ������

and

Vab �
nX
i��

�
�a

�xi

�b

�xi

�
�x���

��
i � ������

Equation ������ leads to the following special cases� If a � x� y� the variance of a is
then

��
a � ��

x � ��
y � Vxy � ������

For the product a � xy one obtains

��
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��
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��
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Vxy
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� ������
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If the variables x and y are not correlated �Vxy � ��� the relations above state that errors
�i�e� standard deviations� add quadratically for the sum a � x� y� and that the relative
errors add quadratically for the product a � xy�

In deriving the error propagation formulas we have assumed that the means and
covariances of the original set of variables x�� � � � � xn are known �or at least estimated� and
that the desired functions of these variables can be approximated by the �rst order Taylor
expansion around the means ��� � � � � �n� The latter assumption is of course only exact for
a linear function� The approximation breaks down if the function a��x� �or functions a�
b� are signi�cantly non�linear in a region around the means �� of a size comparable to the
standard deviations of the xi� ��� � � � � �n� Care must be taken� for example� with functions
like a�x� � ��x when E�x	 � � is comparable to or smaller than the standard deviation
of x� Such situations can be better treated with the Monte Carlo techniques described in
Chapter �� or using con�dence intervals as described in Section ���






Chapter �

Examples of Probability Functions

In this chapter a number of commonly used probability distributions and density functions
are presented� Properties such as mean and variance are given� mostly without proof�
Additional p�d�f�s and details on how to compute their means� variances� etc� can be
found in e�g� �Fro��	 Chapter �� �Ead��	 Chapter �� �Bra�	 Chapter ��

��� Binomial and Multinomial Distributions

Consider a series of N independent trials or observations for which there are two possible
outcomes� here called �success� and �failure�� where the probability for success is some
constant value� p� For example� one could de�ne success if a measured quantity lands in
a particular bin of a histogram� failure if not� with N total entries in the histogram� The
set of trials can be regarded as a single measurement and is characterized by a discrete
random variable k� de�ned to be the total number of successes� Note that here the entire
set of observations is treated as a single random measurement� not each individual trial�
That is� the sample space is de�ned to be the set of possible values of k successes given N
observations� If one were to repeat the entire experiment many times with N trials each
time� the resulting values of k would occur with relative frequencies given by the so�called
binomial distribution�

The form of the binomial distribution can be derived in the following way� We have
assumed that the probability of success in a single observation is p and the probability of
failure is ��p� Since the individual trials are assumed to be independent� the probability
for a series of successes and failures in a particular order is equal to the product of the
individual probabilities� For example� the probability in �ve trials to have success� success�
failure� success� failure in that order is p 	 p 	 �� � p� 	 p 	 �� � p� � p��� � p��� In general
the probability for a particular sequence of k successes and N �k failures is pk���p�N�k�
We are not interested in the order� however� just in the �nal number of successes k� The
number of sequences having k successes in N events is

�



N "

k"�N � k�"
� ����

so the total probability to have k successes in N events is

f�k�N� p� �
N "

k"�N � k�"
pk �� � p�N�k � ���

for k � �� � � � � N � Note that f�k�N� p� is itself a probability� not a probability density�
The notation used is that the random variable �or variables� are listed as arguments of
the probability function �or p�d�f�� to the left of the semicolon� and any parameters �in
this case N and p� are listed to the right� Moments of k can be computed by using the
binomial theorem� which states for arbitrary quantities p and q�

NX
k��

N "

k"�N � k�"
pk qN�k � �p � q�N � ����

In order to compute the nth algebraic momentE�kn	 one set q � ��p� temporarily regard
p and q as independent� and then set q again equal to � � p� This gives

E�kn	 �
NX
k��

kn
N "

k"�N � k�"
pk �� � p�N�k

�
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�n NX
k��
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k"�N � k�"
pk qN�k

�����
q���p
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p
�

�p

�n
�p � q�N

�����
q���p

� ����

Using this one can compute the expectation value of k�

E�k	 � Np � ����

and variance�

V �k	 � E�k�	� �E�k	�� ����

� Np�� � p� �

Recall that expectation values are not functions of the random variable� but they
depend on the parameters of the probability function� in this case p and N � The binomial
probability distribution is shown in Fig� �� and Fig� � for various values of p and N �

��



Figure ��� The binomial distribution
for p 	 �� and various values of N �

Figure �� The binomial distribution
for N 	 �� and various values of p�

The multinomial distribution is the generalization of the binomial distribution to the
case where there are not just two outcomes ��success� and �failure�� but ratherm di�erent
possible outcomes� For a particular trial the probability of outcome i is pi� and since one
of the outcomes must be realized� one has the normalization condition

Pm
i�� pi � ��

Now consider a measurement consisting of N trials� each of which yields one of the
possible m outcomes� The probability for a particular sequence of outcomes� e�g� i on
the �rst trial� j on the second� and so on� in a particular order� is the product of the N
corresponding probabilities� pipj 	 	 	 pk� The number of such sequences that will lead to
k� outcomes of type �� k� outcomes of type two� etc�� is

N "

k�"k�" 	 	 	 km" ����

If we are not interested in the order of the outcomes� just the total numbers of each type�
then the joint probability for k� outcomes of type �� k� of type � etc� is given by the
multinomial distribution�

f�k�� � � � � km�N� p�� � � � � pm� �
N "

k�"k�" 	 	 	 km" p
k�
� p

k�
� 	 	 	 pkmm � ��
�

Suppose one breaks them possible outcomes into two categories� outcome i ��success��
and not outcome i ��failure��� Since this is the same as the binomial process presented
above� the number of occurrences of outcome i� ki� must be binomially distributed� This

��



is of course true for all i� From equations ���� and ���� one has that the expectation
value of ki is E�ki	 � Npi and the variance is V �ki	 � Npi��� pi��

Consider now the three possible outcomes� i� j and everything else� The probability
to have ki outcomes of type i� kj of type j and N � ki � kj of everything else is

f�ki� kj �N� pi� pj� �
N "

ki"kj"�N � ki � kj�"
pkii p

kj
j ��� pi � pj�

N�ki�kj � ����

so that the covariance Vij � cov�ki� kj 	 is

Vij �
NX

ki��

N�kiX
kj��

�ki �Npi��kj �Npj�
N "

ki"kj"�N � ki � kj�"
pkii p

kj
j �� � pi � pj�

N�ki�kj

� �Npipj �����

for i �� j� otherwise Vii � ��
i � N pi ��� pi��

An example of the multinomial distribution is the probability to obtain a particular
result for a histogram constructed from N independent observations of a random variable�
i�e� k� entries in bin �� k� entries in bin � etc�� with m bins and N total entries� Note
from equation ����� that the number of entries in any two bins are negatively correlated�
That is� if in N trials bin i contains a larger than average number of entries �ki � Npi�
then the probability is increased that a di�erent bin j will contain a smaller than average
number�

��� Poisson Distribution

Consider the binomial distribution of Section �� in the limit that N becomes very large�
p becomes very small� but the product Np �i�e� the expectation value of the number of
successes� remains some �nite value � It can be shown that equation ��� leads in this
limit to �see e�g� �Fro��� Bra�	�

f�k�� �
k

k"
e�� � �����

which is called the Poisson distribution for the integer random variable k� where k �
�� �� � � � ��� The p�d�f� has one parameter� � Figure �� shows the Poisson distribution
for  � � �� ���

The expectation value of the Poisson random variable k is

E�k	 �
�X
k��

k
k

k"
e�� �  � ����

�



Figure ��� The Poisson probability

distribution for various values of the

parameter ��

and the variance is given by

V �k	 �
�X
k��

�k � ��
k

k"
e�� �  � �����

An example of a Poisson distributed variable is the number of entries k in a bin of a
histogram in the limit that the total number of entries� N is very large �and k  N�� and
providing that the individual entries are all independent� This is a useful approximation�
since it allows one to estimate the variance of the number of entries in a bin directly from
the number of entries� Another example of a Poisson random variable is the number of
decays of a certain amount of radioactive material in a �xed time period� in the limit that
the total number of possible decays �i�e� the total number of radioactive atoms� is very
large and the probability for an individual decay within the time period is very small�

��� Uniform Distribution

The uniform p�d�f� for the continuous variable x ��� 
 x 
�� is de�ned by

f�x� a� b� �

�
�

b�a a � x � b

� otherwise�
�����

i�e� x is equally likely to be found anywhere between a and b� The mean and variance of
x are given by

��



E�x	 �
Z b

a

x

b� a
dx � �

�
�a� b� � �����

V �x	 �
Z b

a
�x� �

��a� b���
�

b� a
dx � �

���b� a�� � �����

The uniform distribution will be used frequently in Chapter � in connection with Monte
Carlo techniques�

��� Exponential Distribution

The exponential probability density of the continuous variable x �with � � x 
 �� is
de�ned by

f�x� �� �
�

�
e�x�� � �����

The p�d�f� is characterized by a single parameter �� The expectation value of x is

E�x	 �
�

�

Z �

�
xe�x��dx � � � ���
�

and the variance of x is given by

V �x	 �
�

�

Z �

�
�x� ���e�x��dx � �� � �����

An example of an exponential random variable is the decay time of an unstable particle
measured in its rest frame� The parameter � then corresponds to the mean lifetime�
usually denoted by � � The exponential distribution is shown in Fig� �� for di�erent
values of ��

��� Gaussian Distribution

The Gaussian �or normal� p�d�f� of the continuous random variable x �with �� 
 x 
��
is de�ned by

f�x��� ��� �
�p
���

exp


��x� ���

��

�
� ����

which has two parameters� � and ��� The names of the parameters are clearly motivated
by the values of the mean and variance of x� These are found to be

��



Figure ��� The exponential

probability density for various values of

the parameter ��

E�x	 �
Z �

��
x

�p
���

exp


��x� ���

��

�
dx � � � ����

V �x	 �
Z �

��
�x� ���

�p
���

exp


��x� ���

��

�
dx � �� � ���

Recall that � and �� are often used to denote the mean and variance of any p�d�f� as
de�ned by equations ������ and ������� not only those of a Gaussian� Note also that one
may equivalently regard either � or �� as the parameter� The Gaussian p�d�f� is shown in
Fig� �� for di�erent combinations of the parameters � and ��

A special case of the Gaussian p�d�f� is su�ciently important to merit its own notation�
Using � � � and � � � one de�nes the standard Gaussian p�d�f� ��x� as

��x� �
�p
�

exp��x��� � ����

with the corresponding cumulative distribution #�x��

#�x� �
Z x

��
��x��dx� � ����

One can easily show that if y is distributed according to a Gaussian p�d�f� with mean �
and variance ��� then the variable

x �
y � �

�
����

��



Figure ��� The

Gaussian probability density for various

values of the parameters � and ��

is distributed according to the standard Gaussian ��x�� and the cumulative distributions
are related by F �y� � #�x�� The cumulative distribution #�x� cannot be expressed
analytically and must be evaluated numerically� Values of #�x� as well as the quantiles
x� � #����� are tabulated in many reference books �e�g� �Bra�� Fro��� Dud

	� and are
also available by means of computer routines �CER��	�

The importance of the Gaussian distribution stems from the Central Limit Theorem�
The theorem states that the sum of n independent continuous random variables xi with
means �i and variances ��

i becomes a Gaussian random variable with mean � �
Pn

i�� �i
and variance �� �

Pn
i�� �

�
i in the limit that n approaches in�nity� This holds �under fairly

general conditions� regardless of the form of the individual p�d�f��s of the xi� This is the
formal justi�cation for treating measurement errors as Gaussian random variables� and
holds to the extent that the total error is the sum of a large number of small contributions�
The theorem can be proven using the Fourier transform techniques mentioned in Section
���� see e�g� �Bra�	 Section ����

The N �dimensional generalization of the Gaussian distribution is de�ned according to
the following formula�

f��x� ��� V � �
�

���N��jV j��� exp

��


��x� ���TV ����x� ���

�
� ����

where �x and �� are column vectors containing x�� � � � � xN and ��� � � � � �N � �xT and ��T are
the corresponding row vectors� and V is a symmetric N � N matrix� thus containing
N�N � ��� free parameters� For now regard V as a label for the parameters of the
Gaussian� although as with the one�dimensional case� the notation is motivated by what
one obtains for the covariance matrix� The expectation values and �co�variances can be
computed to be
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E�xi	 � �i ����

V �xi	 � Vii

cov�xi� xj	 � Vij �

For two dimensions the p�d�f� becomes

f�x�� x����� ��� ��� ��� 	� �
�

�����
p
� � 	�

	 ��
�

exp

�
� �

�� � 	��

��
x� � ��

��

��
�
�
x� � ��

��

��

� 	
�
x� � ��

��

��
x� � ��

��

���
�

where 	 � cov�x�� x�	������� is the correlation coe�cient�

��� Chi�Square Distribution

The �� �chi�square� distribution of the continuous variable z �� � z 
�� is de�ned by

f�z�n� �
�

n��$�n��
zn����e�z�� � n � �� � � � � � ����

where the parameter n is called the number of degrees of freedom� The gamma function
$�x� is described e�g� in references �Arf��� Bra�	�� The mean and variance of z are found
to be

E�z	 �
Z �

�
z

�

n��$�n��
zn����e�z�� � n � �����

V �z	 �
Z �

�
�z � n��

�

n��$�n��
zn����e�z�� � n � �����

The ���distribution is shown in Fig� �� for several values of the parameter n�

The ���distribution derives its importance from the following� Given N independent
Gaussian random variables xi with known mean �i and variance ��

i � it can be shown that
the random variable

z �
NX
i��

�xi � �i��

��
i

����

�For the purposes of computing the ���distribution� one only needs to know that ��n� 	 n� for integer
n� ��x� 
� 	 x��x�� and ��
��� 	

p
	�

��



Figure ��� The �� probability density
for various values of the parameter n�

is distributed according to the ���distribution for N degrees of freedom� �See e�g�
�Fro��� Bra�	�� More generally� if the xi are not independent but are described by
an N �dimensional Gaussian p�d�f� �equation ������ the variable

z � ��x� ���TV ����x� ��� �����

is a �� random variable for N degrees of freedom� This and other similar examples will
be discussed further in Chapter ��

��� Cauchy 	Breit�Wigner
 Distribution

The Cauchy or Breit�Wigner p�d�f� of the continuous variable x ��� 
 x 
�� is de�ned
by

f�x� �
�

�

�

� � x�
� �����

This is a special case of the Breit�Wigner distribution encountered in particle physics�

f�x� $� x�� �
�

�

$�

$��� � �x� x���
� �����

where the parameters x� and $ correspond to the mass and width of a resonance particle�
This is shown in Fig� �� for several values of the parameters�

The expectation value of the Cauchy distribution is not well de�ned� since although the
p�d�f� is symmetric about zero �or x� for ������ the integrals

R �
�� xf�x�dx and

R�
� xf�x�dx

�




Figure ��� The Cauchy �Breit�Wigner�
probability density for various values of

the parameters x� and ��

are individually divergent� The variance and higher moments are also divergent� The
parameters x� and $ can nevertheless be used to give information about the position and
width of the p�d�f�� as can be seen from the �gure� x� is the peak position �i�e� the most
probable value� also called the mode� and $ is the full�width of the peak at half of the
maximum height��

��� Landau Distribution

In nuclear and particle physics one often encounters the probability density f����� for the
energy loss � of a charged particle when traversing a layer of matter of a given thickness�
This was �rst derived by Landau �Lan��	� and is given by

f����� �
�

�
��� � � � � 
� � �����

where � is a parameter related to the properties of the material and the velocity of the
particle � � v�c� �measured in units of the velocity of light c� and ��� is the p�d�f� of
the dimensionless random variable � The variable  is related to the properties of the
material� the velocity �� and the energy loss �� These quantities are given by

� �
�NAe

	z�	
P
Z

mec�
P
A

d

��
� �����

�The de�nition used here is standard in high energy physics where � is interpreted as the decay rate
of a particle� In some references� e�g� �Ead�
� Fro���� the parameter � is de�ned as the half�width at half
maximum� i�e� the p�d�f� is given by equation ����� with the replacement �� ���

��



 �
�

�

�
�� �



ln

�

��
� �� �E

��
� ���
�

�� �
I� exp����

mec�����
� �����

where NA is Avagadro�s number� me and e are the mass and charge of the electron� z
is the charge of the incident particle in units of the electron�s charge�

P
Z and

P
A are

the sums of the atomic numbers and atomic weights of the molecular substance� 	 is its
density� d is the thickness of the layer� I � I�Z with I� � ���� eV is an ionization energy
characteristic of the material� � � ��

p
� � ��� and �E � ����� � � � is Euler�s constant�

The function ��� is given by

��� �
�

�i

Z ��i�

��i�
exp�u lnu� u�du � �����

where � is in�nitesimal and positive� or equivalently after a variable transformation by

��� �
�

�

Z �

�
exp��u�lnu� �	 sin�u du � �����

The integral must be evaluated numerically �see e�g� �Mac��	� �CER��	 routine G�����
The energy loss distribution is shown in Fig� �
�a� for several values of the velocity
� � v�c� Because of the long �Landau tail�� the mean and higher moments of the Landau
distribution do not exist� i�e� the integral

R�
� �nf���d� diverges for n � �� As can be

seen from the �gure� however� the most probable value �mode� �mp is sensitive to the
particle�s velocity� This has been computed numerically in �Mac��	 to be

�mp � � �ln������ � ����
	 � ����

and is shown in Fig� �
�b���

Although the mean and higher moments do not exist for the Breit�Wigner and Landau
distributions� the probability densities actually describing physical processes must have
�nite moments� If� for example� one were to measure the energy loss � of a particle in a
particular system many times� the average would eventually converge to some value� since
� cannot exceed the energy of the incoming particle� Similarly� the mass of a resonance
particle cannot be less than the sum of the rest masses of its decay products� and it
cannot be more than the center�of�mass energy of the reaction in which it was created�
The problem arises because the Cauchy and Landau distributions are only approximate
models of the physical system� The models break down in the tails of the distributions�
which is the part of the p�d�f� that causes the mean and higher moments to diverge�

�Equation ������ �the �Bethe�Bloch formula�� forms the basis for identi�cation of charged particles
by measurement of ionization energy loss� An important e�ect not included here is the polarization of
the medium� which leads to a saturation of the energy loss at high velocities �the density e�ect�� See e�g�
�All����

��



Figure �
� �a� The Landau probability
density for the energy loss � of a charged

particle traversing a � mm thick layer of

argon gas for various values of the velocity


� �b� The peak position �mode� of the

distributions in �a� as a function of 
� as

given by equation �������

��
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Chapter �

The Monte Carlo Method

The Monte Carlo method is a numerical technique for calculating probabilities and
related quantities by using sequences of random numbers generated according to known
distributions� For the case of a single random variable� the procedure can be broken into
the following stages� First� a series of random values r�� r� � � � is generated according to a
uniform distribution in the interval � 
 r 
 �� That is� the p�d�f� g�r� is given by

g�r� �

�
� � 
 r 
 � �
� otherwise �

� �����

Next� the sequence r�� r�� � � � is used to determine another sequence x�� x� � � � such that
the x values are distributed according to a p�d�f� f�x� in which one is interested� The
values of x can then be treated as simulated measurements of a quantity x� and from
them the probabilities for x to take on values in a certain region can be estimated� This
may seem like a trivial exercise� since the function f�x� was available to begin with� and
could simply have been integrated over the region of interest� The true usefulness of the
technique� however� becomes apparent in multidimensional problems� where integration
of a joint p�d�f� f�x� y� z� � � �� over a complicated region of the sample space may not be
feasible by other methods�

��� Uniformly Distributed Random Numbers

In order to generate a sequence of uniformly distributed random numbers one could in
principle make use of a random physical process such as the repeated tossing of a coin�
In practice� however� this task is almost always accomplished by a computer algorithm
called a random number generator� Many such algorithms have been implemented as user�
callable subprograms �e�g� the routine RANMAR in �CER��	� and are commonly available
in computer program libraries� A detailed discussion of random number generators is
beyond the scope of this book and the interested reader is referred to the more complete

��



treatments in �Bra�� Jam��	� Here a simple but e�ective algorithm will be presented in
order to illustrate the general idea�

A commonly used type of random number generator is based on the so�called
multiplicative linear congruential algorithm� Starting from an initial integer value n��
one generates a sequence of integers n�� n�� � � � according to the rule�

ni�� � animodm � ����

where the multiplier a and modulus m are integer constants and the mod �modulo�
operator means that one takes the remainder of ani divided by m� The values ni follow a
periodic sequence in the range ���m� �	� In order to obtain values uniformly distributed
in ��� �	� one uses the transformation

ri � ni�m � �����

which excludes� however� the end�point values � and �� �More sophisticated algorithms
are able to overcome this minor defect�� The initial value n� �called the seed� and the two
constants a and m determine the entire sequence� which� of course� is not truly random�
but rather strictly determined� The resulting values are therefore more correctly called
pseudo�random� For essentially all applications these can be treated as equivalent to
true random numbers� with the exception of being reproducible� e�g� if one repeats the
procedure with the same seed�

The values of m and a are chosen such that the generated numbers perform well with
respect to various tests of randomness� Most important among these is a long period
before the sequence repeats� since after this occurs the numbers can clearly no longer be
regarded as random� In addition� one tries to attain the smallest possible correlations
between pairs of generated numbers� For a ��bit integer representation� for example�
m � ����
���� and a � ����� have been shown to give good results� and with these
one attains the maximum period of m� � � � ��
 �Bra�� Lec

	�

��� The Transformation Method

Given a sequence of random numbers r�� r�� � � � uniformly distributed in ��� �	� the next
step is to determine a sequence x�� x�� � � � distributed according to the p�d�f� f�x� in
which one is interested� In the transformation method this is accomplished by �nding
a suitable function x�r� which directly yields the desired sequence when evaluated with
the uniformly generated r values� The problem is clearly related to the transformation of
variables discussed in section ���� There� an original p�d�f� f�x� for a random variable x
and a function a�x� were speci�ed� and the p�d�f� g�a� for the function a was then found�
Here the task is to �nd a function x�r� that is distributed according to a speci�ed f�x��
given that r follows a uniform distribution between � and ��
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The probability to obtain a value of r in the interval �r� r � dr	 is g�r�dr� and this
should be equal to the probability to obtain a value of x in the corresponding interval
�x�r�� x�r��dx�r�	� which is f�x�dx� In order to determine x�r� such that this is true� one
can require that the probability that r is less than some value r� be equal to the probability
that x is less than x�r��� �We will see in the following example that this prescription is
not unique�� Thus one must �nd a function x�r� such that F �x�r�� � G�r�� where F
and G are the cumulative distributions corresponding to the p�d�f��s f and g� Since the
cumulative distribution for the uniform p�d�f� is G�r� � r with � � r � �� one has

F �x�r�� �
Z x�r�

��
f�x��dx� �

Z r

��
g�r��dr�

� r �����

Equation ����� e�ectively says that the values of a cumulative distribution F �x�� treated
as a random variable� are uniformly distributed between � and ��

Depending on the f�x� in question it may or may not be possible to solve for x�r� using
equation ������ Consider the exponential distribution discussed in section ��� Equation
����� becomes

Z x�r�

�

�

�
e�x

���dx� � r � �����

Integrating and solving for x gives

x�r� � �� log�� � r� � �����

If the variable r is uniformly distributed between � and � then r� � � � r clearly is too�
so that the function

x�r� � �� log r �����

also has the desired property� That is� if r follows a uniform distribution between � and
�� then x�r� � �� log r will follow an exponential distribution between zero and in�nity
with mean ��

��� The Acceptance�Rejection Method

It turns out to be too di�cult in many practical applications to solve equation ����� for
x�r� analytically� A useful alternative is the acceptance�rejection technique developed
by von Neumann� Consider a p�d�f� f�x� which can be completely surrounded by a box
between xmin and xmax and having height fmax� as shown in Fig� ���� One can generate
a series of numbers distributed according to f�x� with the following algorithm�
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��� Generate a random number x� uniformly distributed between xmin and xmax� �i�e�
x � xmin � r��xmax � xmin� where r� is uniformly distributed between � and ���

�� Generate a second independent random number u uniformly distributed between �
and fmax� �i�e� u � r�fmax��

��� If u 
 f�x�� then accept x� If not� reject x and repeat�

Figure ���� Probability density f�x�

enclosed by a box to generate random

numbers using the acceptance�rejection

technique�

The accepted x values will be distributed according to f�x�� since for each value of x
obtained from step ��� above� the probability to be accepted is proportional to f�x��

As an example consider the p�d�f��

f�x� �
�



�� � x�� � �� � x � � � ���
�

The p�d�f� has a maximum value at x � �� of fmax � ���� Figure ���a� shows a scatter
plot of the random numbers u and x generated according to the algorithm given above�
The x values of the points that lie below the curve are accepted� Figure ���b� shows a
normalized histogram constructed from the accepted points�

The e�ciency of the algorithm �i�e� the fraction of x values accepted� is the ratio
of the areas of the p�d�f� �unity� to that of the enclosing box fmax 	 �xmax � xmin�� For
a highly peaked density function this e�ciency may be quite low� and the algorithm
may be too slow to be practical� In cases such as these� one can improve the e�ciency
by enclosing the p�d�f� f�x� in any other curve g�x� for which random numbers can be
generated according to g�x��

R
g�x��dx�� using e�g� the transformation method� equation

������ The more general algorithm is then�

�Equation ����� gives the distribution of the scattering angle � in the reaction e�e� � ���� with
x 	 cos ��
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Figure ��� �a� Scatter plot of pairs

of numbers �u� x�� where x is uniformly

distributed in �
 � x � 
� and u is

uniform in � � u � fmax� The x values of

the points below the curve are accepted�

�b� Normalized histogram of the accepted

x values with the corresponding p�d�f�

��� Generate a random number x according to the p�d�f� g�x��
R
g�x��dx��

�� Generate a second random number u uniformly distributed between � and g�x��

��� If u 
 f�x�� then accept x� If not� reject x and repeat�

Here the probability to generate a value x in step ��� is proportional to g�x�� and the
probability to be retained after step ��� is equal to f�x��g�x�� so that the total probability
to obtain x is proportional to f�x� as required�

��� Applications of the Monte Carlo Method

The Monte Carlo technique provides a method for determining the p�d�f��s of functions
of random variables� Suppose� for example� one has n independent random variables
x�� � � � � xn distributed according to known p�d�f��s f��x��� � � � � fn�xn�� and one would like
to compute the p�d�f� g�a� of some �possibly complicated� function a�x�� � � � � xn�� The
techniques described in section ��� are often only usable for relatively simple functions
of a small number of variables� With the Monte Carlo method� a value for each xi
is generated according to the corresponding fi�xi�� The value of a�x�� � � � � xn� is then
computed and recorded �e�g� in a histogram�� The procedure is repeated until one has
enough values of a to estimate the properties of its p�d�f� g�a� �e�g� mean� variance� with
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the desired statistical precision� Examples of this technique will be used in Chapters �
through 
�

The Monte Carlo method is often used to simulate experimental data� In particle
physics� for example� this is typically done in two stages� event generation and detector
simulation� Consider for example an experiment in which an incoming particle such as
an electron scatters o� a target and is then detected� Suppose there exists a theory that
predicts the probability for scattering to occur as a function of the scattering angle �i�e�
the di�erential cross section�� First one constructs a Monte Carlo computer program
to generate values of the scattering angles and hence the momentum vectors of the �nal
state particles� Such a program is called an event generator� In high energy physics� event
generators are available to describe a wide variety of particle reactions�

The output of the event generator� i�e� the momentum vectors of the generated
particles� are then used as input for a detector simulation program� Since the response of
a detector to the passage of the scattered particles also involves random processes such as
the production of ionization� multiple Coulomb scattering� etc�� the detector simulation
program is also implemented using the Monte Carlo method� Program packages such
as GEANT �CER��	 can be used to describe complicated detector con�gurations� and
experimental collaborations typically spend considerable e�ort in achieving as complete
a modelling of the detector as possible� This is especially important in order to optimize
the detector�s design for investigating certain physical processes before investing time and
money in constructing the apparatus�

When the Monte Carlo method is used to simulate experimental data� one can most
easily think of the procedure as a computer implementation of an intrinsically random
process� Probabilities are naturally interpreted as relative frequencies of outcomes of
a repeatable experiment� and the experiment is simply repeated many times on the
computer� The Monte Carlo method can also be regarded� however� as providing a
numerical solution to other problems involving probabilities� and the results are clearly
independent of the probability interpretation� This is the case� for example� when the
Monte Carlo method is used simply to carry out a transformation of variables or to
compute integrals of p�d�f��s�
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Chapter �

Statistical Tests

��� Hypotheses� Test Statistics� Signicance Level�

Power

In this chapter some basic concepts of statistical test theory are presented� Here the
task is to make a statement about how well the observed data stand in agreement with
given predicted probabilities� i�e� a hypothesis� The hypothesis under consideration is
traditionally called the null hypothesis� H�� which could specify� for example� a probability
density f�x� of a random variable x� If the hypothesis determines f�x� uniquely it is said
to be simple� if the form of the p�d�f� is de�ned but not the values of at least one free
parameter �� then f�x� �� is called a composite hypothesis� In such cases the unknown
parameter or parameters are estimated from the data using e�g� techniques discussed in
Chapters � ! 
� For now we will concentrate on simple hypotheses�

A statement about the validity of H� often involves a comparison with some alternative
hypotheses� H��H�� � � �� Suppose one has n observations of a random variable x�
�x�� � � � � xn�� and a set of hypotheses� H��H�� � � �� each of which speci�es a given p�d�f�
f�xjH��� f�xjH��� � � ��� In order to investigate the measure of agreement between the
observed data and a given hypothesis� one constructs a function of the measured sample
called a test statistic T �x�� � � � � xn�� Each of the hypotheses will imply a given p�d�f� for
the statistic T � i�e� g�T jH��� g�T jH��� etc�

The procedure for choosing the test statistic T depends in general on the hypotheses
under consideration� In trying to distinguish between two hypotheses H� and H�� the
goal is clearly to construct T in such a way that the p�d�f��s g�T jH�� and g�T jH�� overlap
as little as possible� Procedures for constructing test statistics will be taken up again in
sections ���� and ���� Let us suppose for the moment that we have chosen such a function

�For the p�d�f� of x given the hypothesis H the notation of conditional probability f�xjH� is used
�section 
���� even though in the context of classical statistics a hypothesis H is only regarded as a
random variable if it refers to the outcome of a repeatable experiment� In Bayesian statistics both x and
H are random variables� so there the notation is in any event appropriate�
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T �x�� � � � � xn�� which would have the p�d�f� g�T jH�� if H� were true� and g�T jH�� if H�

were true� as shown in Fig� ����

Figure ���� Probability densities for the
test statistic T under assumption of the

hypotheses H� and H�� H� is rejected if

T is observed in the critical region� here

shown as T  Tcut�

Often one formulates the statement about the compatibility between the data and
the various hypotheses in terms of a decision to accept or reject a given null hypothesis
H�� In practice this is done by de�ning a critical region for T � If the value of T actually
observed is in the critical region� one rejects the hypothesis H�� otherwise� H� is accepted�
The critical region is chosen such that the probability for T to be observed there under
assumption of the hypothesis H� is some value �� called the signi�cance level of the test�
For example� the critical region could consist of values of T greater than a certain cut�o�
Tcut� as shown in Fig� ���� so that

� �
Z �

Tcut
g�T jH��dT � �����

One would then decide that the hypothesis H� is true if the value of T observed is less
than Tcut� The signi�cance level � is thus the probability of rejecting H� if H� is true�
This is called an error of the �rst kind� An error of the second kind takes place if the
hypothesis H� is accepted �i�e� T is observed less than Tcut� but the true hypothesis was
not H� but rather some alternative hypothesis H�� The probability for this is

� �
Z Tcut

��
g�T jH��dT � ����

where ��� is called the power of the test to discriminate against the alternative hypothesis
H��
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��� An Example with Particle Selection

As an example� the test statistic T could represent the measured ionization created by a
charged particle of a known momentum traversing a detector� The amount of ionization is
subject to �uctuations from particle to particle� and depends �for a �xed momentum� on
the particle�s mass� Thus the p�d�f� g�T jH�� in Fig� ��� could correspond to the hypothesis
that the particle is an electron� and the g�T jH�� could be what one would obtain if the
particle was a pion� i�e� H� � e� H� � ��

Suppose the particles in question are all known to be either electrons or pions� and that
one would like to select a sample of electrons� �The electrons are regarded as �signal��
and pions are considered as �background��� The probabilities to accept a particle of a
given type� i�e� the e�ciencies �e and �	� are thus

�e �
Z Tcut

��
g�T je�dT � � � � � �����

�	 �
Z Tcut

��
g�T j��dT � � � �����

Individually these can be made arbitrarily close to zero or unity simply by an
appropriate choice of the critical region� �i�e� by making a looser or tighter cut on the
ionization�� The price one pays for a high e�ciency for the signal is clearly an increased
amount of contamination� i�e� the purity of the electron sample decreases because some
pions are accepted as well�

If the relative fractions of pions and electrons are not known� the problem becomes one
of parameter estimation �Chapters � ! 
�� That is� the test statistic T will be distributed
according to f�T � ae� � aeg�T je� � a	g�T j��� where ae and a	 � � � ae are the fractions
of electrons and pions� respectively� An estimate of ae then gives the total number of
electrons Ne in the original sample of Ntot particles� Ne � aeNtot�

Alternatively one may want to select a set of electron candidates by requiring T 
 Tcut�
leading to Nacc accepted out of the Ntot particles� One is then often interested in
determining the total number of electrons present before the cut on T was made� The
number of accepted particles is given by

Nacc � �eNe � �	N	

� �eNe � �	�Ntot �Ne� � �����

which gives

Ne �
Nacc � �	Ntot

�e � �	
� �����
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From ����� one clearly sees that the number of accepted particles Nacc can only be used to
determine the number of electrons Ne if the e�ciencies �e and �	 are di�erent� If there are
uncertainties in �	 and �e� then these will translate into an uncertainty in Ne according to
the error propagation techniques of section ���� One tries to select the critical region �i�e�
the cut value for the ionization� in such a way that the total error in Ne is a minimum�

The probabilities that a particle with an observed value of T is an electron or a pion�
h�ejT � and h��jT �� are obtained from the p�d�f��s g�T je� and g�T j�� using Bayes� theorem
���
��

h�ejT � � ae g�T je�
ae g�T je� � a	 g�T j�� � �����

h��jT � � a	 g�T j��
ae g�T je� � a	 g�T j�� � ���
�

where ae and a	 � � � ae are the prior probabilities for the hypotheses e and �� Thus
in order to give the probability that a given selected particle is an electron one needs the
prior probabilities for all of the possible hypotheses as well as the p�d�f��s that they imply
for the statistic T �

Although this is essentially the Bayesian approach to the problem� equations ����� and
���
� also make sense in the framework of classical statistics� If one is dealing with a large
sample of particles� then the hypotheses H � e and H � � refer to a characteristic that
changes randomly from particle to particle� Using the relative frequency interpretation in
this case� h�ejT � gives the fraction of times a particle with a given T will be an electron�
In Bayesian statistics using subjective probability� one would say that h�ejT � gives the
degree of belief that a given particle with a measured value of T is an electron�

Instead of the probability that an individual particle is an electron� one may be
interested in the purity pe of a sample of electron candidates selected by requiring T 
 Tcut�
This is given by

pe �
number of electrons with T 
 Tcut

number of all particles with T 
 Tcut

�

R Tcut
�� aeg�T je�dTR Tcut

�� �aeg�T je� � ��� ae�g�T j���dT

�
ae�eNtot

Nacc
� �����

One can check using equation ����� that this is simply the mean electron probability
h�ejT �� averaged over the interval ���� Tcut	� That is�

pe �

R Tcut
�� h�ejT � f�T � dTR Tcut

�� f�T � dT
� ������
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��� Goodness�of�Fit Tests

Frequently one wants to give a measure of how well a given null hypothesis H� is
compatible with the observed data without speci�c reference to any alternative hypothesis�
This is called a test of the goodness�of��t� and can be done by constructing a test statistic
whose value itself re�ects the level of agreement between the observed measurements and
the predictions of H�� Procedures for constructing appropriate test statistics will be given
in sections ���� and ���� For now we will give a short example to illustrate the main idea�

Suppose one tosses a coin N times and obtains nh heads and nt � N � nh tails� To
what extent are nh and nt consistent with the hypothesis that the coin is �fair�� i�e� that
the probabilities for heads and tails are equal� As a test statistic one can simply use the
number of heads nh� which for a fair coin is assumed to follow a binomial distribution
�equation ���� with the parameter p � ���� That is�

f�nh�N� �
N "

nh"�N � nh�"

�
�



�nh ��


�N�nh
� ������

Suppose that N � � tosses are made and nh � �� heads are observed� Since the
expectation value of nh �equation ����� is E�nh	 � Np � ��� there is evidently a sizable
discrepancy between the expected and actually observed outcomes� In order to quantify
the signi�cance of the di�erence one can give the probability of obtaining a result with
the same level of discrepancy with the hypothesis or higher� In this case� this is the sum
of the probabilities for nh � �� �� � �� ��� �
� ��� �� Using equation ������ one obtains the
probability P � ������

The result of the goodness�of��t test is thus given by stating the so�called P �value�
i�e� the probability P � under assumption of the hypothesis in question H�� of obtaining
a result as compatible or less with H� than the one actually observed� Equivalently one
often gives the con�dence level CL � ��P � In the classical approach one stops here� and
does not attempt to give a probability for H� to be true� since a hypothesis is not treated
as a random variable� �The con�dence level is� however� often incorrectly interpreted as
such a probability�� In Bayesian statistics one would use Bayes� theorem ����� to assign
a probability to H�� but this requires giving a prior probability� i�e� the probability that
the coin is fair before having seen the outcome of the experiment� In some cases this is
a practical approach� in others not� For the present we will remain within the classical
framework and simply give the con�dence level or the P �value�

The P �value is thus the fraction of times one would obtain data as compatible with H�

or less so if the experiment �i�e� � coin tosses� were repeated many times under similar
circumstances� By �similar circumstances� one means always with �� tosses� or in general
with the same number of observations in each experiment� Suppose the experiment had
been designed to toss the coin until at least three heads and three tails were observed
and then to stop� and in the real experiment this happened to occur after the �th toss�
Assuming such a design� one can show that the probability to stop after the �th toss
or later �i�e� to have an outcome as compatible or less with H�� is not ���� but rather
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������ which would seem to lead to a signi�cantly di�erent conclusion about the validity
of H�� Maybe we do not even know how the experimenter decided to toss the coin� we are
merely presented with the results afterwards� One way to avoid di�culties with the so�
called optional stopping problem is simply to interpret the phrase �similar experiments�
to always mean experiments with the same number of observations� Although this is an
arbitrary convention� it allows for a unique interpretation of a reported con�dence level�
For further discussion of this problem see �Ber

� Oha��	�

In the example with the coin tosses� the test statistic T � nh was reasonable since from
the symmetry of the problem it was easy to identify the region of values of T that have
an equal or lesser degree of compatibility with the hypothesis than the observed value�
This is related to the fact that in the case of the coin� the set of all possible alternative
hypotheses consists simply of all values of the parameter p not equal to ���� and all of
these lead to an expected asymmetry between the number of heads and tails�

��� The Signicance of a Peak

In preparation�
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Chapter �

General Concepts of Parameter

Estimation

In this chapter some general concepts of parameter estimation are examined which apply
to all of the methods discussed in Chapters � through 
� In addition� prescriptions for
estimating properties of p�d�f��s such as the mean and variance are given�

��� Samples� Estimators� Bias

Consider a random variable x described by a p�d�f� f�x�� Here� the sample space is the
set of all possible values of x� A set of n independent observations of x is called a sample

of size n� A new sample space can be de�ned as the set of all possible values for the
n�dimensional vector �x � �x�� � � � � xn�� That is� the entire experiment consisting of n
measurements is considered to be a single random measurement� which is characterized
by n numerical quantities� x�� � � � � xn� Since it is assumed that the observations are all
independent and that each xi is described by the same p�d�f� f�x�� the joint p�d�f� for the
sample fsample�x�� � � � � xn� is given by

fsample�x�� � � � � xn� � f�x��f�x�� 	 	 	 f�xn� � �����

Although the dimension of the random vector �i�e� the number of measurements� can in
practice be very large� the situation is greatly simpli�ed by the fact that the joint p�d�f�
for the sample is the product of n p�d�f��s of identical form�

Consider now the situation where one has made n measurements of a random variable
x� whose p�d�f� f�x� is not known� The central problem of statistics is to infer the
properties of f�x� based on the observations x�� � � � � xn� Speci�cally� one would like to
construct functions of the xi to estimate the various properties of the p�d�f� f�x�� Often
one has a hypothesis for the p�d�f� f�x� �� which depends on an unknown parameter � �or

parameters �� � ���� � � � � �m��� One then tries to construct a function of the observed xi
to estimate the parameters�
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A function of the observed measurements x�� � � � � xn which contains no unknown
parameters is called a statistic� In particular� a statistic used to estimate some property of
a p�d�f� �e�g� its mean� variance or other parameters� is called an estimator� The estimator
for a quantity � is usually written with a hat� %�� to distinguish it from the true value �
whose exact value is �and may forever remain� unknown�

If %� converges to � in the limit of large n� the estimator is said to be consistent� This
is usually a minimum requirement for any useful estimator� In the following the limit of
large n will be referred to as either the �large sample� or �asymptotic� limit� and is also
sometimes called the �high statistics� limit� In situations where it is necessary to make
the distinction� the term estimator will be used to refer to the function of the sample
�i�e� its functional form� and an estimate will mean the value of the estimator evaluated
with a particular sample� The procedure of estimating a parameter�s value given the data
x�� � � � � xn is usually called parameter �tting�

Since an estimator %��x�� � � � � xn� is a function of the measured values� it is itself a
random variable� That is� if the entire experiment were repeated many times� each time
with a new sample x�� � � � � xn of size n� the estimator %��x�� � � � � xn� would take on di�erent
values� being distributed according to some p�d�f� g�%�� ��� which depends in general on the
true value of �� The probability distribution of a statistic is called a sampling distribution�
Much of what follows in the next several chapters concerns sampling distributions and
their properties� especially expectation value and variance�

The expectation value of an estimator %� with the sampling p�d�f� g�%�� �� is

E�%��x�� � � � � xn�	 �
Z

%�g�%�� ��d%� ����

�
Z
	 	 	

Z
%��x�� � � � � xn�f�x�� �� 	 	 	 f�xn� ��dx� 	 	 	 dxn �

where equation ����� has been used for the joint p�d�f� of the sample� Recall that this is
the expected mean value of %� from an in�nite number of similar experiments� each with
a sample of size n� One de�nes the bias of an estimator %� as

b � E�%�	� � � �����

Note that the bias does not depend on the measured values of the sample but rather on
the sample size� the functional form of the estimator and on the true �and in general
unknown� properties of the p�d�f� f�x�� including the true value of �� A parameter for
which the bias is zero independent of the sample size n is said to be unbiased� if the bias
vanishes in the limit n�� then it is said to be asymptotically unbiased� Note also that
an estimator %� can be biased even if it is consistent� That is� even if %� converges to the
true value � in a single experiment with an in�nitely large number of measurements� it
does not follow that the average of %� from an in�nite number of experiments� each with
a �nite number of measurements� will converge to the true value� Unbiased estimators
are thus particularly valuable if one would like to combine the result with those of other
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experiments� In most practical cases� the bias is small compared to the statistical error
�i�e� the standard deviation� and one does not usually reject using an estimator with a
small bias if there are other characteristics �e�g� simplicity� in its favor�

��� Estimators for Mean� Variance� Covariance

Suppose one has a sample of size n of a random variable x� x�� � � � � xn� It is assumed
that x is distributed according to some p�d�f� f�x� which is not known� not even as a
parameterization� We would like to construct a function of the xi to be an estimator for
the expectation value of x� �� One possibility is the arithmetic mean of the xi� de�ned by

x �
�

n

nX
i��

xi � �����

The arithmetic mean of the elements of a sample is called the sample mean� and is denoted
by a bar� e�g� x� This should not be confused with the expectation value �population mean�
of x� denoted by � or E�x	� for which x is an estimator�

The expectation value of the sample mean E�x	 is given by �see equation �����

E�x	 � E

�
�

n

nX
i��

xi

�
�

�

n

nX
i��

E�xi	 �
�

n

nX
i��

� � � � �����

since

E�xi	 �
Z
	 	 	

Z
xif�x�� 	 	 	 f�xn�dx� 	 	 	 dxn � � �����

for all i� One sees from equation ����� that the sample mean x is an unbiased estimator
for the population mean ��

Consider again a sample of size n of a random variable x from some unknown p�d�f�
f�x�� The sample variance s� is de�ned by

s� �
�

n� �

nX
i��

�xi � x�� � �����

By computing the expectation value of s� as done with x one can show that the sample
variance is an unbiased estimator for the population variance� ��� Similarly� one �nds
that the statistic S� de�ned by

S� �
�

n

nX
i��

�xi � ��� ���
�

is an unbiased estimator of �� for a p�d�f� f�x� with known mean� �� and the quantity
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bVxy �
�

n� �

nX
i��

�xi � x��yi � y� �����

is an unbiased estimator for the covariance Vxy of two random variables x and y of unknown
mean� This can be normalized by the square root of the estimators for the sample variance
to form an estimator rxy for the correlation coe�cient 	xy �see equation ��������

rxy �
bVxy
sxsy

�

Pn
i���xi � x��yi � y��Pn

j���xj � x�� 	Pn
k���yk � y��

���� � ������

Given an estimator %� one can compute its variance V �%�	 � E�%��	 � �E�%�	��� Recall
that V �%�	 �or equivalently its square root ��
� is a measure of the expected dispersion of %�
about its mean in a large number of similar experiments each with sample size n� and as
such is often quoted as the statistical error of %�� For example� the variance of the sample
mean x is

V �x	 � E�x�	� �E�x	�� � E

��
 �

n

nX
i��

xi

����

n

nX
j��

xj

�A�	� ��

�
�

n�

nX
i�j���

E�xixj	� �� ������

�
�

n�

h
�n� � n��� � n��� � ���

i
� �� �

��

n
�

where �� is the variance of f�x�� and we have used the fact that E�xixj	 � �� for i �� j
and E�x�i 	 � �� ���� This expresses the well known result that the standard deviation of
the mean of n measurements of x is equal to the standard deviation of f�x� itself divided
by
p
n�

The expectation value and variance of the estimator of the correlation coe�cient rxy
depend on higher moments of the joint p�d�f� f�x� y�� For the case of the two�dimensional
Gaussian p�d�f� ��
� they are found to be �see �Mui
	 and references therein�

E�r	 � 	 � 	�� � 	��

n
� O�n��� �����

V �r	 �
�

n
�� � 	��� � O�n��� � ������

Although the estimator r given by equation ������ is only asymptotically unbiased� it
is nevertheless widely used because of its simplicity� Note that although bVxy� s�x and s�y
are unbiased estimators of Vxy� ��

x and ��
y� the nonlinear function bVxy��sxsy� is not an

unbiased estimator of Vxy���x�y�� cf� Section ��� Caution should be used when applying
equation ������ to estimate the signi�cance of an observed correlation� see Section ����

�




Chapter �

The Method of Maximum Likelihood

��� ML Estimators

Suppose a measurement of a certain random variable x has been repeated n times�
yielding the values �x�� � � � � xn�� �Here� x could also represent a multidimensional random
vector� i�e� the outcome of each individual observation could be characterized by several
quantities�� Suppose� in addition� one has a composite hypothesis for the underlying
probability density function in the form of a parameterization� f�x� ��� where � represents
one or possibly several unknown parameters� The task is to estimate the values of the
parameters� �This is in contrast to Chapter � where no parameterization of the unknown
p�d�f� was assumed��

Under the assumption of the hypothesis f�x� ��� including the value of �� the
probability for the �rst measurement to be in the interval �x�� x� � dx�	 is f�x�� ��dx��
Since the measurements are all assumed to be independent� the probability to have the
�rst one in �x�� x� � dx�	� the second in �x�� x� � dx�	� and so forth is given by

Probability that xi in �xi� xi � dxi	 for all i �
nY
i��

f�xi� ��dxi � �����

If the hypothesized p�d�f� and parameter values are correct� one expects a high probability
for the data that were actually measured� Conversely� a parameter value far away from
the true value should yield a low probability for the measurements obtained� Since the
dxi do not depend on the parameters� the same reasoning also applies to the following
function L�

L��� �
nY
i��

f�xi� �� ����

called the likelihood function� Note that this is just the joint p�d�f� for the xi� although it
is treated here as a function of the parameter� �� The xi� on the other hand� are treated
as �xed �i�e� the experiment is over��

��



With this motivation one de�nes the maximum likelihood �ML� estimators for the
parameters to be those which maximize the likelihood function� That is� form parameters
��� � � � � �m� one has the following set of m equations�

�L���� � � � � �m�

��i
� �� i � �� � � � �m � �����

The equations can be solved for ��� � � � � �m� which are called the ML estimators� If more
than one maximumexists� the highest one is taken� As with other types of estimators� they
are usually written with hats� %��� � � � � %�m� to distinguish them from the true parameters �i
whose exact values remain unknown�

The general idea of maximum likelihood is illustrated in Fig� ���� A sample of ��
measurements �shown as tick marks on the horizontal axis� was generated according to
a Gaussian p�d�f� with parameters � � ��� � � ���� The solid curve in Fig� ����a� was
computed using the parameter values for which the likelihood function �and hence also its
logarithm� are a maximum� %� � ���� and %� � ������ Also shown as a dashed curve is the
p�d�f� using the true parameter values� As is unavoidable because of random �uctuations�
the estimates %� and %� are not exactly equal to the true values � and �� The estimators
%� and %� and their variances� which re�ect the size of the statistical errors� are derived
below in Section ���� Figure ����b� shows the p�d�f� for parameters far away from the true
values� leading to lower values of the likelihood function�

Figure ���� A sample of � observations
of a Gaussian random variable with mean

� 	 ��� and standard deviation � 	

��
� �a� The p�d�f� evaluated with the

parameters that maximize the likelihood

function and with the true parameters�

�b� The p�d�f� evaluated with parameters

far from the true values� giving a lower

likelihood�

The motivation for the ML principle presented above does not necessarily guaranty

��



any optimal properties for the resulting estimators� The ML method turns out to have
many advantages� among them ease of use and the fact that all of the available information
from the data is used �i�e� no binning is required�� In the following the desirability of ML
estimators will be investigated with respect to several criteria� most importantly variance
and bias�

��� Example of ML Estimator� an Exponential

Distribution

Suppose the proper decay times for unstable particles of a certain type have been measured
for n decays� yielding values ti� � � � � tn� and suppose one chooses as a hypothesis for the
distribution of t an exponential p�d�f� with mean � �

f�t� � � �
�

�
e�t�� � �����

The task here is to estimate the value of the parameter � � Rather than using the likelihood
function as de�ned in equation ���� it is usually more convenient to use its logarithm�
From the condition

� logL

��

�����
����

�
�

L

�L

��

�����
����

� � �����

one obtains the same estimators as from maximizing L� with the advantage that the
product in L is converted into a sum� and exponentials in f are converted into simple
factors� The log�likelihood function is then

log L�� � �
nX
i��

log f�ti� � � �
nX
i��

�
log

�

�
� ti

�

�
� �����

Maximizing logL with equation ����� gives the ML estimator %� �

%� �
�

n

nX
i��

ti � �����

In this case the ML estimator %� is simply the sample mean of the measured time values�
The expectation value of %� is

E�%��t�� � � � � tn�	 �
Z
	 	 	

Z
%� �t�� � � � � tn� fjoint�t�� � � � � tn� � � dt� 	 	 	 dtn ���
�

�
Z
	 	 	

Z 

�

n

nX
i��

ti

�
�

�
e�t��� 	 	 	 �

�
e�tn��dt� 	 	 	 dtn

��



�
�

n

nX
i��

��Z ti
�

�
e�ti��dti

Y
j ��i

Z �

�
e�tj��dtj

�A
�

�

n

nX
i��

� � � �

so %� is an unbiased estimator for � � We could have concluded this from the results of
Sections �� and ��� where it was seen that � is the expectation value of the exponential
p�d�f�� and that the sample mean is an unbiased estimator of the expectation value for
any p�d�f� �See Chapter �� for a derivation of the p�d�f� for %� ��

As an example consider a sample of �� Monte Carlo generated decay times t distributed
according to an exponential p�d�f� as shown in Fig� ��� The values were generated using
a true lifetime � � ���� Equation ����� gives the ML estimate %� � ����� The curve shows
the exponential p�d�f� evaluated with the ML estimate�

Figure ��� A sample of 
�� Monte

Carlo generated observations of an

exponential random variable t with mean

� 	 
��� The curve is the result of a

maximum likelihood �t� giving �� 	 
�����

Suppose that one is interested not in the mean lifetime but in the decay constant
 � ��� � How can we estimate � In general� given a function a��� of some parameter ��
one has

�L

��
�

�L

�a

�a

��
� � � �����

Thus �L��� � � implies �L��a � � at a � a��� unless �a��� � �� As long as this
is not the case� one obtains the ML estimator of a function simply by evaluating the
function with the original ML estimator� i�e� %a � a�%��� The estimator for the decay
constant is thus % � ��%� � n�

Pn
i�� ti� The transformation invariance of ML estimators

is a convenient property� but an unbiased estimator does not necessarily remain so under
transformation� As will be derived in Section ����� the expectation value of % is

�



E�%	 � 
n

n� �
�

�

�

n

n� �
� ������

so % � ��%� is an unbiased estimator of ��� only in the limit of large n� even though %�
is an unbiased estimator for � for any value of n� To summarize� the ML estimator of a
function a of a parameter � is simply %a � a�%��� But if %� is an unbiased estimator of �
�E�%�	 � �� it does not necessarily follow that a�%�� is an unbiased estimator of a���� It can
be shown� however� that the bias of ML estimators goes to zero in the large sample limit
for essentially all practical cases� �An exception to this rule occurs if the allowed range of
the random variable depends on the parameter� see �Ead��	 Section 
������

��� Example of ML estimators� Gaussian of

Unknown � and �


Suppose one has n measurements of a random variable x assumed to be distributed
according to a Gaussian p�d�f� of unknown � and ��� The log�likelihood function is

logL��� ��� �
nX
i��

log f�xi��� �
�� �

nX
i��



log

�p
�

�
�


log

�

��
� �xi � ���

��

�
� ������

Setting the derivative of logL with respect to � equal to zero and solving gives

%� �
�

n

nX
i��

xi � �����

Computing the expectation value as done in equation ���
� gives E�%�	 � �� so %� is
unbiased� �As in the case of the mean lifetime estimator %� � %� here happens to be a sample
mean� so one knows already from Sections �� and �� that it is an unbiased estimator for
the mean ��� Repeating the procedure for �� and using the result for %� gives

c�� �
�

n

nX
i��

�xi � %��� � ������

Computing the expectation value of c��� however� gives

E�c��	 �
n� �

n
�� � ������

The ML estimator c�� is thus biased� but the bias vanishes in the limit of large n�

Recall� however� from Section ��� that the sample variance s� is an unbiased estimator
for the variance of any p�d�f�� so that

��



s� �
�

n� �

nX
i��

�xi � %��� ������

is an unbiased estimator for the parameter �� of the Gaussian� To summarize� equation
������ gives the ML estimator for the parameter ��� and it has a bias that goes to zero as
n approaches in�nity� The statistic s� from equation ������ is not biased �which is good�
but it is not the ML estimator�

��� Variance of ML Estimators� Analytic Method

Given a set of n measurements of a random variable x and a hypothesis for the p�d�f�
f�x� �� we have seen how to estimate its parameters� The next question is� what are
the statistical errors on the estimates� That is� if we repeated the entire experiment
a large number of times �with n measurements each time� each experiment would give
di�erent estimated values for the parameters� How widely spread will they be� One way
of summarizing this is with the variance �or standard deviation� of the estimator�

For certain cases one can compute the variances of the ML estimators analytically�
For the example of the exponential distribution with mean � estimated by %� � �

n

Pn
i�� ti�

one has

V �%� 	 � E�%� �	� �E�%� 	�� ������
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�

n

nX
i��
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��
�

�
e�t��� 	 	 	 �

�
e�tn��dt� 	 	 	 dtn �
Z

	 	 	
Z 


�

n

nX
i��

ti

�
�

�
e�t��� 	 	 	 �

�
e�tn��dt� 	 	 	 dtn

��

�
� �

n
�

This could have been guessed� since it was seen in Section �� that the variance of
the sample mean is ��n times the variance of the p�d�f� of t �the time of an individual
measurement�� for which in this case the variance is � �� �Section ��� and the estimator %�
happens to be the sample mean�

Remember that the variance of %� computed in equation ������ is a function of the
true �and unknown� parameter � � So what do we report for the statistical error of the
experiment� Because of the transformation invariance of ML estimators �equation ������
we can obtain the ML estimate for the variance ��

�� � � ��n simply by replacing � with

its own ML estimator %� � giving c��
�� � %� ��n� or similarly for the standard deviation�

%��� � %��
p
n�

��



When an experimenter then reports a result like %� � ��
� ����� it is meant that the
estimate �e�g� from ML� is ��
� and if the experiment were repeated many times with the
same number of measurements per experiment� one would expect the standard deviation
of the distribution of the estimates to be ����� This is one possible interpretation of the
�statistical error� of a �tted parameter� and is independent of exactly how �according to
what p�d�f�� the estimates are distributed� It is not� however� the standard interpretation
in those cases where the distribution of estimates from many repeated experiments is not
Gaussian� In such cases one usually gives the so�called �
��� con�dence interval� which
will be discussed in Chapter �� This is the same as plus or minus one standard deviation
if the p�d�f� for the estimator is Gaussian� It can be shown �see e�g� reference �Ken��	�
�Fro��	� that in the large sample limit� ML estimates are in fact distributed according to
a Gaussian p�d�f�� so in this case the two procedures lead to the same result�

��� Variance of ML Estimators� Monte Carlo

Method

For cases that are too di�cult to solve analytically� the distribution of the ML estimates
can be investigated with the Monte Carlo method� To do this one must simulate a
large number of experiments� compute the ML estimates each time and look at how the
resulting values are distributed� For the �true� parameter in the Monte Carlo program the
estimated value from the real experiment can be used� As has been seen in the previous
section� the quantity s� de�ned by equation ����� is an unbiased estimator for the variance
of a p�d�f� Thus one can compute s for the ML estimates obtained from the Monte Carlo
experiments and give this as the statistical error of the parameter estimated from the real
measurement�

As an example of this technique� consider again the case of the mean lifetime
measurement with the exponential distribution �Section ���� Using a true lifetime of
� � ���� a sample of n � �� measurements gave the ML estimate %� � ���� �see Fig� ����
Regarding the �rst Monte Carlo experiment as the �real� one� the procedure was then
repeated ���� times� with �� measurements per experiment� The true value was taken to
be � � ����� i�e� the ML estimate of the �rst experiment�

Figure ��� shows a histogram of the resulting ML estimates� The sample mean of
the estimates is %� � ������ which is close to the input value� as expected since the ML
estimator %� is unbiased� The sample standard deviation from the ���� experiments is
s � ������ This gives essentially the same error value as what one would obtain from
equation ������� %��� � %��

p
n � �����

p
�� � ������ For the real measurement one would

then report �for either method to estimate the error� %� � ���� � �����

��



Figure ���� A histogram of the

ML estimate �� from 
��� Monte Carlo

experiments with � observations per

experiment� For the Monte Carlo �true�

parameter � � the result of Fig� ��� was

used� The sample standard deviation is

s 	 ��

�

��� Variance of ML Estimators� the RCF Bound

It turns out in many applications to be too di�cult to compute the variances analytically�
and a Monte Carlo study usually involves a signi�cant amount of work� In such cases
one typically uses the Rao�Cram&er�Frechet �RCF� inequality �see e�g� �Ken��	� �Fro��	�
�Bra�	� which gives a lower bound on an estimator�s variance� This inequality applies to
any estimator� not just those constructed from the ML principle� For the case of a single
parameter � the limit is given by

V �%�	 �


� �

�b

��

���
E

�
��� log L

���

�
� ������

where b is the bias as de�ned in equation ����� and L is the likelihood function� Equation
������ is not� in fact� the most general form of the RCF inequality� but the conditions under
which the form presented here hold are almost always met in practical situations� see e�g�
�Ead��	 Section ������ In the case of equality �i�e� minimum variance� the estimator is
said to be e�cient� It can be shown �see e�g� references �Ken��	� �Fro��	� that if e�cient
estimators exist for a given problem� the maximum likelihood method will �nd them�
Furthermore it can be shown that ML estimators are always e�cient in the large sample
limit� In practice� one often assumes e�ciency and zero bias and hopes that this is a good
approximation� In cases of doubt one should check the results with a Monte Carlo study�
The general conditions for e�ciency are discussed in e�g� �Ead��	 Section ������ �Ken��	�

For the example of the exponential distribution with mean � one has from equation
�����
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�� logL
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nX
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�� %�

�
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����
�

and �b��� � � since b � � �see equation ���
��� Thus the RCF bound for the variance
�also called the minimum variance bound� or MVB� of %� is

V �%� 	 � �

E
h
� n

��
��� ���

�
�
i �

�

� n
��

�
�� �E���

�

� �
� �

n
� ������

where we have used equation ���
� to obtain E�%� 	� Since � ��n is also the variance obtained
from the exact calculation �equation ������� we see that equality holds and %� � �

n

Pn
i�� ti

is an e�cient estimator for the parameter � �

For the case of more than one parameter� ��� � � � � �m� the corresponding formula for the
inverse of the covariance matrix of their estimators Vij � cov�%�i� %�j	 is �assuming e�ciency
and zero bias�

�V ���ij � E

�
��� logL

��i��j

�
� �����

This is then inverted to �nd Vij � which can then be estimated by evaluating it with the

ML estimates � � %�� Note that equation ����� can be written

�V ���ij �
Z
	 	 	

Z
� ��

��i��j



nX

k��

log f�xk� ��� � � � � �m�

�
nY
l��

f�xl� ��� � � � � �m�dxl

� n 	
Z
�f�x� ��� � � � � �m� ��

��i��j
log f�x� ��� � � � � �m�dx � �����

where f�x� ��� � � � � �m� is the p�d�f� for the random variable x� for which one has n
measurements� That is� the inverse of the RCF bound for the covariance matrix �also
called the Fisher information matrix� see �Ead��	 Section �� and �Bra�	� is proportional
to the number of measurements in the sample� n� This expresses the well�known result
that statistical errors �at least for e�cient estimators� decrease in proportion to ��

p
n�

It turns out to be impractical in many situations to compute the RCF bound
analytically� since this requires the expectation value of the second derivative of the log�
likelihood function �i�e� an integration over the measured random variable x�� In the case
of a su�ciently large sample �large number of individual measurements in the experiment�
one can estimate V �� by evaluating the second derivative with the measured data and
the ML estimates of %��

�dV ���ij � ��� logL

��i��j

�����

��


� ����

��



For a single parameter � this reduces to

c��
�
 �



��

�
�� log L

���

������

��


� �����

This is the usual method for estimating the covariance matrix when the likelihood function
is numerically maximized with a computer��

��� Variance of ML Estimators� Graphical Method

A simple extension of the previously discussed method using the RCF bound leads to a
graphical technique for obtaining the variance of ML estimators� Consider the case of a
single parameter �� and expand the log�likelihood function in a Taylor series about the
ML estimate %��

logL��� � logL�%�� �

�
� logL

��

�

��


�� � %�� �
�

"

�
�� logL

���

�

��


�� � %��� � � � � � �����

By de�nition of %� we know that log L�%�� � logLmax and that the second term in the

expansion is zero� Estimating the variance of %�� c��
�
 by the RCF bound and ignoring

higher order terms gives

log L��� � log Lmax � �� � %���

c��
�


� �����

or

log L�%� � %��
� � logLmax � �


� �����

That is� a change in the parameter � of one standard deviation from its ML estimate leads
to a decrease in the log�likelihood of �� from its maximum value�

It can be shown that the log�likelihood function is a parabola �i�e� the likelihood
function is a Gaussian curve� in the large sample limit �Fro��	� If this is not the case�
one can nevertheless adopt equation ����� as the de�nition of the statistical error� The
interpretation of such errors is discussed further in Chapter ��

As an example of the graphical method for determining the variance of an estimator�
consider again the examples of Sections �� and ��� with the exponential distribution�

�For example� the routines MIGRAD and HESSE in the program MINUIT �Jam��� numerically
compute the matrix of second derivatives of logL using �nite di�erences� evaluate it at the ML estimates�
and invert to �nd the covariance matrix�

�




Figure ��� shows the log�likelihood function log L�� � as a function of the parameter �
for a Monte Carlo experiment consisting of �� measurements� The standard deviation
of %� is estimated by changing � until logL�� � decreases by ��� giving �%�� � ������
�%�� � ����� �see �gure�� In this case logL�� � is reasonably close to a parabola and
one can approximate %��� � �%�� � �%�� � ����� This leads to approximately the same
answer as from the exact standard deviation ��

p
n evaluated with � � %� � In Chapter �

the interval �%� ��%��� %� � �%��	 will be reinterpreted as an approximation for the �
���
central con�dence interval �cf� Section �����

Figure ���� Log�likelihood function

logL�� � as a function of � � In the large

sample limit the widths of the intervals

��� ����
�

� �� � and ���� �� ������ correspond

to one standard deviation ���� �

��� Example of ML with Two Parameters

As an example of the maximumlikelihoodmethod with two parameters� consider a particle
reaction where each scattering event is characterized by a certain scattering angle � �or
equivalently x � cos ��� Suppose a given theory predicts the angular distribution

f�x��� �� �
� � �x� �x�

 � ���
� �����

�e�g� � � � and � � � for e�e�� ���� in lowest order quantum electrodynamics �Qui
�	��
Note that the denominator  � ��� is necessary for f�x��� �� to be normalized to one
for �� � x � ��

To make the problem slightly more complicated �and more realistic� assume that the
measurement is only possible in a restricted angular range� say xmin � x � xmax� This
requires a recalculation of the normalization constant� giving

��



f�x��� �� �
� � �x� �x�

�xmax � xmin� �
�
�
�x�max � x�min� �

�
�
�x�max � x�min�

� ���
�

Figure ��� shows a histogram of a Monte Carlo experiment where ��� events were
generated using � � ���� � � ���� xmin � ����� and xmax � ����� By numerically
maximizing the log�likelihood function with the program MINUIT one obtains

%� � ����
 � ���� �
%� � ����� � ����
 � �����

where the statistical errors correspond to the square roots of the variance� These
are estimated by the routine HESSE by numerically computing the matrix of second
derivatives of the log�likelihood function with respect to the parameters and then
inverting� as described in Section ���� In the same manner one obtains the estimate of the
covariance dcov�%�� %�	 � ������ or equivalently the correlation coe�cient r�� � ����
� One

sees that the estimators %� and %� are positively correlated� Note that the histogram itself
is not used in the procedure� each value of x is used to compute the likelihood function�

Figure ���� Histogram based on ����

Monte Carlo generated values of x�	

cos �� distributed according to equation

������ with � 	 ��� 
 	 ��� Also shown

is the result of the ML �t� which gave

�� 	 ����� ���� and �
 	 ������ ��
���
The errors were computed numerically

using equation �����

To understand these results more intuitively it is useful to look at a Monte Carlo study
of ��� similar experiments� all with ��� events with � � ��� and � � ���� A scatter plot
of the ML estimates %� and %� are shown in Fig� ����a�� The density of points corresponds
to the joint p�d�f� for %� and %�� Also shown in Fig� ��� �b� and �c� are the normalized
projected histograms for %� and %� separately� corresponding to the marginal p�d�f��s� i�e�
the distribution of %� integrated over all values of %�� and vice versa� One sees that the
marginal p�d�f��s for %� and %� are both approximately Gaussian in shape�

��



Figure ���� Results of ML �ts to �� Monte Carlo generated data sets� �a� The �tted values of �� and
�
� �b� The marginal distribution of �
� �c� The marginal distribution of ���

��



The sample means� standard deviations and covariance �see Section ��� from the
Monte Carlo experiments are�

%� � ����� %� � ����

s�� � ����� s�� � �����

%V�� � ������ r�� � ����

������

Note that %� and %� are in good agreement with the �true� values put into the Monte
Carlo� �� � ��� and � � ���� and the sample �co�variances are in good agreement with
the values estimated numerically from the RCF bound�

The fact that %� and %� are correlated is easily seen from the fact that the band of
points in the scatter plot is tilted� That is� if one required %� � �� this would lead to an
enhanced probability to also �nd %� � �� In other words� the conditional p�d�f� for %� given
%� � � is centered at a higher mean value and has a smaller variance than the marginal
p�d�f� for %��

Figure ��� shows the positions of the ML estimates in the parameter space �i�e�
logL�%�� %�� � logLmax� along with a contour corresponding to log L � log Lmax � ���

Figure ���� The contour logL 	

logLmax�
�� shown with the true values
for the parameters ��� 
� and the ML

estimates ���� �
�� In the large sample limit

the tangents to the curve correspond to

��� ���� and �
 � �����

In the large sample limit the log�likelihood function takes on the form �see reference
�Fro��	�

log L��� �� � logLmax� �

��� 	����

��
� � %�

��

��
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The contour of log L��� �� � logLmax � �� is thus given by
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��
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��
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� � %�

��

�

� � %�

��

��	 � � �����

which is called the covariance ellipse� It is centered at the ML estimates �%�� %�� and has
an angle � with respect to the � axis given by

tan � �
	����
��
� � ��

�

� ������

Note in particular that the tangents to the ellipse are at � � %� � ��� � � %� � �� �see
Fig� ����� If the estimators are correlated� then changing a parameter by one standard
deviation corresponds in general to a decrease in the log�likelihood of more than ���
If one of the parameters� say �� were known� then the standard deviation of %� would
be somewhat smaller� since this would then be given by a decrease of �� in log L����
Similarly� if additional parameters ��� �� � � �� are included in the �t� and if their estimators
are correlated with %�� then this will result in an increase in the standard deviation of %��

��� Maximum Likelihood with Binned Data

Consider n observations of a random variable x distributed according to a p�d�f� f�x� ��
for which one would like to estimate the unknown parameter � �or parameters ��� � � � � �m��
For very large data samples the log�likelihood function becomes di�cult to compute since
one must sum log f�xi� �� for each value xi� In such cases instead of recording the value
of each measurement one usually makes a histogram� yielding a certain number of entries
k�� � � � � kN in N bins� The expectation value of the number of entries in bin i is given by

i��� � n
Z xmax

i

xmin
i

f�x� ��dx � ������

where xmin
i and xmax

i are the bin limits� One can regard the histogram �i�e� the N values
ki� as a single measurement of an N �dimensional random vector for which the joint p�d�f�
is given by a multinomial distribution �equation ��
��

fjoint�k�� � � � � kN ��� � � � � N � �
n"

k�" 	 	 	 kN "


�
n

�k�

	 	 	


N
n

�kN
� ������

The probability to be in bin i has been expressed as the expectation value i divided by the
total number of entries n� Taking the logarithm of the joint p�d�f� gives the log�likelihood
function�

��



log L��� �
NX
i��

ki log i��� � ������

where additive terms not depending on the parameters have been dropped� �This is
allowed since the estimators depend only on derivatives of logL�� The estimators %� are
found by maximizing logL by whatever means available �e�g� numerically�� In the limit
that the bin size is very small �i�e� N very large� the likelihood function becomes the
same as that of the ML method without binning �equation ������ Thus the binned ML
technique does not encounter any di�culties if some of the bins have few or no entries�
This is in contrast to an alternative technique using the method of least squares discussed
in Section ����

As an example consider again the sample of �� measured particle decay times that
we examined in Section ��� for which the maximum likelihood result without binning is
shown in Fig� ��� Figure ��
 shows the same sample displayed as a histogram with a bin
width of �t � ���� Also shown is the �t result obtained frommaximizing the log�likelihood
function based on equation ������� The result is %� � ������ in good agreement with the
unbinned result of %� � ����� Estimating the standard deviation from the curvature of
the log�likelihood at its maximum �equation ������ results in %��� � ������ slightly larger
than that obtained without binning�

Figure ��
� Histogram of the data

sample of � particle decay times from

Section ��� with the ML �t result�

In many problems one may want to regard the total number of entries n as a random
variable from a Poisson distribution with mean �� The value of � may itself depend on
the other parameters �� or it may be independent of them�� That is� the measurement is

�For example� in a particle scattering reaction both the total cross section �i�e� �� and the angular
distribution of the outgoing particles ���� � � � � �N � depend in general on parameters such as particle masses
and coupling constants�

��



de�ned to consist of �rst determining n from a Poisson distribution and then distributing
n observations of x in a histogram with N bins� giving k�� � � � � kN � The joint p�d�f� for n
and k�� � � � � kN is the product of a Poisson distribution and a multinomial distribution�

fjoint�n� k�� � � � � kN � �� �� � � � � N � �
�ne�

n"

n"

k�" 	 	 	 kN "


�
�

�k�

	 	 	


N
�

�kN

� ������

where one has the constraints
PN

i�� i � � and
PN

i�� ki � n� Using these in equation
������ gives

fjoint�k�� � � � � kN ��� � � � � N � �
NY
i��

kii
ki"

e��i � ����
�

where the mean number of entries in each bin now depends on the parameters � and ��

i��� �� � �
Z xmax

i

xmin
i

f�x� ��dx � ������

From the joint p�d�f� ����
� one sees that the problem is equivalent to treating the
number of entries in each bin as an independent Poisson random variable with mean i�
Taking the logarithm of the joint p�d�f� and dropping terms that do not depend on the
parameters gives

logL��� �� �
NX
i��

ki log i��� ��� � � ������

Setting the derivative of logL with respect to � equal to zero gives the ML estimator for
the total number of entries %��

%� �
NX
i��

ki � n � ������

as one might expect� Since the expectation value of a Poisson variable is equal to its
mean� %� � n is an unbiased estimator for �� The estimators for the parameters � are
clearly the same as those from the case where n was treated as a constant� Any quantity
depending on the total number of entries will now have an additional source of �uctuation�
however� since %� is a random variable� If � does not depend on the parameters �� one has
�� log L����� � �� and thus � and � are uncorrelated�

��



���� Testing Goodness�of�Fit with Maximum

Likelihood

Although the principle of maximum likelihood de�nes a technique for estimating the
parameters of a hypothesized p�d�f� it does not provide a convenient method of assessing
the goodness�of��t� That is� for a given p�d�f� the ML principle says one should maximize
the likelihood function to estimate the parameters� One does not immediately know
however� whether Lmax could have been higher for some other p�d�f�� or how high in
absolute terms one should expect Lmax to be if the hypothesis is correct� This is one of
the major disadvantages of the maximum likelihood method compared to e�g� the method
of least squares discussed in Chapter ��

One way to investigate the goodness�of��t is to perform a large number of Monte
Carlo experiments with the same number of measurements as the real experiment� For
the �true� Monte Carlo parameters� the ML estimates from the real experiment can be
used� One then looks at the distribution of the value of the maximized log�likelihood
function� log Lmax� This is shown in Fig� ��� for the example of the scattering experiment
discussed in Section ��
� There the data set shown in Fig� ��� gave %� � ����
� %� � �����
and logLmax � ������ Using these parameter values results in the distribution of log Lmax

values shown in Fig� ���� One would have reason to suspect the hypothesis if the real
experiment gave a lower logLmax than some large fraction of the Monte Carlo experiments�
Given a value of logLmax from a real experiment� one can compute a con�dence level �or
P �value� as described in Section ���� to be used as a measure of the goodness�of��t�

Figure ���� Normalized histogram of

the values of the maximized log�likelihood

function logLmax for �� Monte Carlo

experiments� The vertical line shows the

value of logLmax obtained using the data

shown in Fig� ��� �See text��

A much simpler qualitative test of the goodness�of��t is to compare a histogram of
the data �normalized to unit area� with the �tted p�d�f� Although the ML �t itself is
independent of the binning of the histogram� a visual comparison of the two is a way to
quickly check whether the hypothesis is reasonable�

��



���� Combining Measurements with Maximum

Likelihood

Consider an experiment in which one has n measured values of a random variable x�
for which the p�d�f� fx�x� �� depends on an unknown parameter �� Suppose in another
experiment one has m measured values of a di�erent random variable y� whose p�d�f�
fy�y� �� depends on the same parameter �� For example� x could be the invariant mass
of electron�positron pairs produced in proton�antiproton collisions� and y could be the
invariant mass of muon pairs� Both distributions have peaks at around the mass MZ

of the Z� boson� and so both p�d�f��s contain MZ as a parameter� One then wishes to
combine the two experiments in order to obtain the best estimate of the parameter�

The two experiments together can be interpreted as a single measurement of a vector
containing n values of x and m values of y� The likelihood function is therefore

L��� �
nY
i��

fx�xi� �� 	
mY
j��

fy�yj� �� � Lx��� 	 Ly��� � �����

or equivalently its logarithm is given by the sum logL��� � log Lx��� � logLy����

Thus as long as the likelihood functions of the experiments are available� the full
likelihood function can be constructed and the ML estimator for � based on both
experiments can be determined� This technique includes of course the special case where
x and y are the same random variable� and the samples x�� � � � � xn and y�� � � � � ym simply
represent two di�erent subsamples of the data�

More frequently one does not report the likelihood functions themselves� but rather
only estimates of the parameters� Suppose the two experiments based on measurements
of x and y give estimators %�x and %�y for the parameter �� which themselves are random

variables distributed according to the p�d�f��s gx�%�x� �� and gy�%�y� ��� The two estimators
can be regarded as the outcome of a single experiment yielding the two�dimensional vector
�%�x� %�y�� As long as %�x and %�y are independent� the log�likelihood function is given by the
sum

logL��� � log gx�%�x� �� � log gy�%�y� �� � ������

For large data samples the p�d�f��s gx and gy can be assumed to be Gaussian� and one

reports the estimated standard deviations %��
x
and %��
y

as the errors on %�x and %�y� As will
be seen in Chapter �� the problem is then equivalent to the method of least squares� and
the combined estimate for � is given by the weighted average

%� �
%�x�%��

�
x
� %�y�%��

�
y

��%��
�
x
� ��%��

�
y

� ������

with the estimated variance

��
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��%��
�
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� ��%��

�
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� ������

This technique can clearly be generalized to combine any number of measurements�

�




Chapter �

The Method of Least Squares

��� Connection with Maximum Likelihood

In many situations a measured value y can be regarded as a Gaussian random variable
centered about the quantity�s true value � This follows from the central limit theorem
as long as the total error �i�e� deviation from the true value� is the sum of a large number
of small contributions� A more detailed discussion of the conditions under which errors
can be regarded as Gaussian can be found in references �Bra�	� �Ead��	� �Fro��	�

With this motivation for the importance of Gaussian errors� consider a set of N
independent Gaussian random variables yi� each of which is associated to another variable
xi� i � �� � � � � N � which is assumed to be known without error� �For example� one has N
measurements of a cross section yi � ��Ei� at di�erent energies xi � Ei�� Assume that
each has a di�erent unknown mean� i� and a di�erent but known variance� ��

i � The
N measurements of yi can be equivalently regarded as a single measurement of an N �
dimensional random vector� The joint p�d�f� for the yi is the product of N Gaussians�

g�y�� � � � � yN ��� � � � � N � �
�
�� � � � � �

�
N � �

NY
i��

�q
���

i

exp

���yi � yTi �
�

��
i

�
� �����

Suppose further that we have a hypothesis for the functional dependence of  on x�
 � f�x� ��� which depends on unknown parameters �� � ���� � � � � �m�� The primary aim
of the method of least squares is to estimate the parameters ��� � � � � �m� In addition� the
method allows for a simple evaluation of the goodness�of��t of the hypothesized p�d�f�

Taking the logarithm of the joint p�d�f� and dropping additive terms that do not depend
on the parameters gives the log�likelihood function�

logL���� � ��



NX
i��

�yi � f�xi� ����
�

��
i

� ����

This is maximized by �nding the values of the parameters �� that minimize the quantity

��



������ �
NX
i��

�yi � f�xi� �����

��
i

� �����

namely� the quadratic sum of the di�erences between measured and hypothesized values�
weighted by the inverse of the variances� This is the basis of the method of least squares
�LS�� and is used to de�ne the procedure even in cases where the individual measurements
yi are not Gaussian� but as long as they are independent�

If the measurements are not independent but described by an N �dimensional Gaussian
p�d�f� with known covariance matrix V but unknown mean values� the corresponding log�
likelihood function is obtained from the logarithm of the joint p�d�f� given by equation
����

logL���� � ��



NX
i�j��

�yi � f�xi� �����V
���ij�yj � f�xj� ���� � �����

where additive terms not depending on the parameters have been dropped� This is
maximized by minimizing the quantity

������ �
NX

i�j��

�yi � f�xi� �����V
���ij�yj � f�xj� ���� � �����

which reduces to equation ����� if the covariance matrix �and hence its inverse� are
diagonal�

The parameters that minimize the �� are called the LS estimators� %��� � � � � %�m� As will
be discussed in Section ���� the resulting minimum�� follows under certain circumstances
the �� distribution� as de�ned in Section ��� Because of this the quantity de�ned by
equations ����� or ����� is often called ��� even in more general circumstances where its
minimum value is not distributed according to the �� p�d�f�

��� Linear Least�Squares Fit

Although one can carry out the least�squares procedure for any function f�x� ���� the
resulting �� value and LS estimators have particularly desirable properties for the case
where f�x� ��� is a linear function of the parameters �� � ���� � � � � �m��

f�x� ��� � � � � �m� �
mX
i��

�ihi�x� � �����

where the hi�x� are any linearly independent functions of x� �What is required is that
f is linear in the parameters �i� The hi�x� are not in general linear in x� they are just
linearly independent from each other� i�e� one cannot be expressed as a linear combination


�



of the others�� For this case� the estimators and their variances can be found analytically�
although depending on the tools available one may still prefer to maximize �� numerically
with a computer� Furthermore� the estimators have zero bias and minimumvariance� This
follows from the Gauss�Markov theorem �see �Ken��	 Section ����� and holds regardless
of the number of measurements N � and the p�d�f��s of the individual measurements�

Using equation ����� for the form of f�x� ��� in the de�nition of the �� �equation ������
and di�erentiating with respect to the parameters �i to �nd the minimum gives

���

��k
�

NX
i��

�hk�xi�
��
i

��yi � mX
j��

�jhj�xi�

�	
�
�

��


� �� k � �� � � � �m � �����

or m equations which can be solved for the m estimators� %��� � � � � %�m� �These equations
and their solutions are often expressed in matrix form� see e�g� references �Fro��	� �Bra�	��
The estimators can be shown to have zero bias and a covariance matrix whose inverse can
be estimated by

�V ���ij �
NX
k��

hi�xk�hj�xk�

��
k

� ���
�

or equivalently by

�V ���ij �
�



�
����

��i��j

�
�
�

��


� �����

If the variances ��
k are exactly known� then equations ���
� and ����� give the exact inverse

covariance matrix �V ���ij� Note that equation ����� coincides with the RCF bound for
the covariance matrix in the situation of Section ���� with logL � �����

For the case of f�x� ��� linear in the parameters �� the �� is parabolic in ���

������ � � � � �m� � ���%��� � � � � %�m� �
�



mX
i�j��

�
����

��i��j

�
�
�

��


��i � %�i���j � %�j� � ������

Combining this with the expression for the variance given by equation ����� yields the
contours in parameter space whose tangents are at %�i�%�i� corresponding to a one standard
deviation departure from the LS estimates�

������ � � � � �m� � ���%��� � � � � %�m� � � � ��
min � � � ������

This contour corresponds directly to the covariance ellipse seen in connection with the
maximum�likelihood problem of Section ����� If the function f�x� ��� is not linear in the
parameters� then the contour de�ned by equation ������ is not� in general� elliptical� and


�



one can no longer obtain the standard deviations from the tangent planes� It de�nes a
region in parameter space� however� which can be interpreted as a con�dence region� the
size of which re�ects the statistical uncertainty of the �tted parameters� The concept of
con�dence regions will be de�ned more precisely in Chapter ��

��� Least�Squares Fit of a Polynomial

As an example of the least�squares method consider the data shown in Fig� ���� consisting
of �ve values of a quantity y measured with errors �y at di�erent values of x� Assume the
measured values yi each come from a Gaussian distribution centered around yTi �which
is unknown� with a standard deviation �i � �yi �assumed known�� As a hypothesis for
 � f�x� one might try a polynomial of order m �i�e� m� � parameters��

f�x� ��� � � � � �m� �
mX
i��

�ix
i � �����

This is a special case of the linear least squares �t described in Section �� with the
coe�cient functions hi�x� equal to powers of x� Figure ��� shows the LS �t result for
polynomials of order zero� one and four� The zero�order polynomial is simply the average
of the measured values� with each point weighted inversely by the square of its error� This
hypothesis gives %�� � ����� ���� and �� � ���� for four degrees of freedom ��ve points
minus one free parameter�� The data are better described by a straight�line �t ��rst order
polynomial� giving %�� � ����� ����� %�� � ������ ����� and �� � ���� for three degrees
of freedom� Since there are only �ve data points� the fourth order polynomial �with �ve
free parameters� goes exactly through every point yielding a �� of zero� The use of the
�� value to evaluate the goodness�of��t will be discussed in Section ����

As in the case of the maximumlikelihood method� the statistical errors and covariances
of the estimators can be estimated in several ways� All are related to the change in the ��

as the parameters are moved away from the values for which �� is a minimum� Fig� ���a�
shows the �� as a function of �� for the case of the zero�order polynomial� The ��

curve is a parabola� since the hypothesized �t function is linear in the parameter �� �see
equation �������� The variance of the LS estimator %�� can be evaluated by any of the
methods discussed in Section ��� from the change in the parameter necessary to increase
the minimum �� by one� from the curvature �second derivative� of the parabola at its
minimum� or from the quadratic sum of the inverse errors �equation ���
���

Figure ���b� shows a contour of �� � ��
min � � �the covariance ellipse� for the �rst�

order polynomial �two�parameter� �t� From the inclination of the ellipse one can see that
the estimators %�� and %�� are negatively correlated� Equation ��� gives

%��
�
� � bV �%��	�

��� � ���� ������

%��
�
� � bV �%��	�

��� � �����






Figure ���� Least squares �ts of

polynomials of order �� 
 and � to �ve

measured values�

Figure ��� �a� The �� as a function of �� for the zero order polynomial �t shown in Fig� ��
� The
horizontal lines indicate ��min and ��min � 
� The corresponding �� values �vertical lines� are the LS

estimate ��� and ��� � ������ �b� The LS estimates ��� and ��� for the �rst order polynomial �t in Fig� ��
�
The tangents to the contour ������� ���� 	 ��min � 
 correspond to

��� � ����� and ��� � ����� �


�



bV�� � dcov�%��� %��	 � ����
 �

corresponding to a correlation coe�cient of r � ������� As in the case of maximum
likelihood� the standard deviations correspond to the tangents of the covariance ellipse�
and the correlation coe�cient to its angle of inclination �see equations ����� and ��������

��� Least Squares with Binned Data

In the previous examples� the function relating the �true� values  to the variable x was
not necessarily a p�d�f� for x� but an arbitrary function� It can be a p�d�f�� however� or it
can be proportional to one� Suppose� for example� one has n observations of a random
variable x from which one makes a histogram with N bins� Let yi be the number of
entries in bin i and f�x� �� be a hypothesized p�d�f� for which one would like to estimate

the parameter � �or parameters �� � ��� � � � � �m�� The number of entries predicted in bin
i� i � E�yi	� is then

i��� � n
Z xmax

i

xmin
i

f�x� ��dx � npi��� � ������

where xmin
i and xmax

i are the bin limits and pi��� is the probability to have an entry in
bin i� The parameter � is found by minimizing the quantity

����� �
NX
i��

�yi � i�����

��
i

� ������

where ��
i is the variance of the number of entries in bin i� Note that here the function

f�x� �� is normalized to one� since it is a p�d�f�� and the function that is �tted to the
histogram is i����

If the mean number of entries in each bin is small compared to the total number of
entries� the contents of each bin is approximately Poisson distributed� The variance is
therefore equal to the mean �see equation ������ so that equation ������ becomes

����� �
NX
i��

�yi � i�����

i���
�

NX
i��

�yi � npi�����

npi���
� ������

An alternative method often used to simplify matters is to approximate the variance
of the number of entries in bin i by the number of entries actually observed yi� rather
than by the predicted number i���� This is the so�called modi�ed least�squares method

�MLS� for which one minimizes


�



����� �
NX
i��

�yi � i����
�

yi
�

NX
i��

�yi � npi����
�

yi
� ������

This may be easier to deal with computationally� but has the disadvantage that the errors
may be poorly estimated �or �� may even be unde�ned� if any of the bins contain few or
no entries�

When using the LS method for �tting to a histogram one should be aware of the
following potential problem� Often instead of using the observed total number of entries
n to obtain i from equation ������� an additional adjustable parameter � is introduced
as a normalization factor� The predicted number of entries in bin i� i��� �� � E�yi	� then
becomes

i��� �� � �
Z xmax

i

xmin
i

f�x� ��dx � �pi��� � ����
�

This step would presumably be taken in order to eliminate the need to count the number
of entries n� In principle it is simple to determine n but in practice it may require
a few extra lines of programming� One can easily show� however� that introducing an
adjustable normalization parameter leads to an incorrect estimate of the total number of
entries� Consider the LS case where the variances are taken from the predicted number
of entries ���

i � i�� Using equation ����
� for i and di�erentiating the resulting �� with
respect to � gives the estimator

%�LS � n�
��


� ������

For the MLS case ���
i � yi� one obtains

%�MLS � n� �� � �����

Since one expects a contribution to �� on the order of one per bin� the relative error
in the number of entries is typically N�n too high �LS� or N�n too low �MLS�� If one
takes as a rule of thumb that each bin should have at least �ve entries one could have an
�unnecessary� error in the normalization of �� � ���

Although the bias introduced may be smaller than the corresponding statistical error�
a result based on the average of such �ts could easily be wrong by an amount larger than
the statistical error of the average� Therefore� one should determine the normalization
directly from the number of entries� If this is not practical �e�g� because of software
constraints� one should at least be aware that a potential problem exists� and the bin size
should be chosen such that the bias introduced is acceptably small�

The least squares method with binned data can be compared to the maximum
likelihood technique of Section ���� In that case the joint p�d�f� for the bin contents
yi was taken to be a multinomial distribution� or alternatively each yi was regarded as


�



a Poisson random variable� Recall that in the latter case� where the expected total
number of entries � was treated as an adjustable parameter� the correct value %� � n was
automatically found �equation �������� Furthermore it has been pointed out in �Ead��	
�Section 
���� and references therein� that the variances of ML estimators converge faster
to the minimum variance bound than LS or MLS estimators� giving an additional reason
to prefer the maximum likelihood method for histogram �tting�

��� Testing Goodness�of�Fit with �


If the measured values yi are Gaussian� the resulting estimators coincide with the ML
estimators� as seen in Section ���� Furthermore� the �� value can be used as a test of how
likely it is that the hypothesis� if true� would yield the observed data�

The quantity �yi � f�xi� �����i is a measure of the deviation between the ith
measurement yi and the function f�xi�� so �� is a measure of total agreement between
observed data and hypothesis� It can be shown �see e�g� �Fro��� Bra�	� that for the case
where

��� the yi� i � �� N are independent Gaussian random variables with known variances� ��
i

�or are distributed according to an N �dimensional Gaussian with known covariance
matrix V ��

�� the hypothesis f�x� ��� � � � � �m� is linear in the parameters �i� i � ��m� and�

��� the functional form of the hypothesis is correct�

then the value of �� de�ned by equation ����� �or for correlated yi by equation ������ is
distributed according to the ���distribution with N �m degrees of freedom as de�ned in
Section ��� equation �����

As seen in Section ��� the expectation value of a random variable z from the ���
distribution is equal to the number of degrees of freedom� One often quotes therefore the
�� divided by the number of degrees of freedom nD �the number of data points minus the
number of independent parameters� as a measure of goodness�of��t� If it is near one� then
all is as expected� If it is much less than one� then the �t is better than expected given
the size of the measurement errors� This is not bad in the sense of providing evidence
against the hypothesis� but it is usually grounds to check that the errors �i have not been
overestimated or are not correlated�

If ���nD is much larger than one� then there is some reason to doubt the hypothesis�
As discussed in Section ���� one often quotes a con�dence level �CL� for a given ��� which
is the probability that the hypothesis would lead to a �� value worse �i�e� greater� than
the one actually obtained� That is�

CL �
Z �

��
f�z�nD�dz � �����
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where f�z�nD� is the ���distribution for nD degrees of freedom� Values can be computed
numerically �with e�g� the CERN routine PROB� number G��� �CER��	� or looked up in
standard graphs or tables �e�g� references �PDG��� Bra�	�� The CL at which one decides
to reject a hypothesis is subjective� but note that underestimated errors� �i� can cause a
correct hypothesis to give a bad ���

For the polynomial �t considered in Section ���� one obtained for the straight�line
�t �� � ���� for three degrees of freedom ��ve data points minus two free parameters��
Computing the con�dence level using equation ����� gives CL � ����� That is� if the
true function  � f�x� were a straight line and if the experiment were repeated many
times� each time yielding values for %��� %�� and ��� then one would expect the �� values to
be worse �i�e� higher� than the one actually obtained ��� � ����� in ���� of the cases�
This can be checked by performing a large number of Monte Carlo experiments where
the �true� parameters �� and �� are taken from the results of the real experiment� and a
�measured� value for each data point is generated from a Gaussian of width � given by
the corresponding errors� Figure ��� shows a normalized histogram of the �� values from
���� simulated experiments along with the predicted �� distribution for three degrees of
freedom�

Figure ���� Normalized histogram

of �� values from 
��� Monte Carlo

experiments along with the predicted ���

distribution for three degrees of freedom�

For the �t to the horizontal line one had �� � ���� for four degrees of freedom� The
corresponding con�dence level is CL � ��� 	 ���
� If the horizontal�line hypothesis were
true� one would expect a �� as high as the one obtained in only three out of a billion
experiments� so this hypothesis can safely be ruled out� The advantage of the �� is that it
is not necessary to simulate a billion experiments to make a judgement about the goodness�
of��t� since we know that as long as the data points are measurements of Gaussian random
variables� the �� value will be distributed according to the �� distribution� This is one of
the main advantages of the method of least squares over maximum likelihood� where the
value of the maximized likelihood function cannot be interpreted so directly�
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One should keep in mind the distinction between having small statistical errors and
having a good �i�e� small� ��� The statistical errors are related to the change in �� when
the parameters are varied away from their �tted values� and not to the absolute value of
�� itself� From equation ���
� one can see that the covariance matrix depends only on

the coe�cient functions hi�x� �i�e� on the composite hypothesis f�x� ���� and on the errors
of the individual measurements �k� but is independent of the measured values yk� To
demonstrate this point� consider the �t to the horizontal line done in Section ���� which
yielded the estimate %�� � ����� ���� and �� � ���� for four degrees of freedom� Figure
��� shows a set of �ve data points with the same x values and the same errors� �y� but
with di�erent y values� A �t to a horizontal line gives %�� � �
�� � ���� and �� � ���
�
The error on %�� stays the same� but the �� value is now such that the horizontal�line
hypothesis provides a good description of the data� The �� vs� �� curves for the two cases
have the same curvature� but one is simply shifted vertically with respect to the other by
a constant o�set�

Figure ���� Least�squares �t of a zero
order polynomial to data with the same x

values and errors as shown in Fig� ��
� but

with di�erent y values� Although the ��

value is much smaller than in the previous

example� the error of ��� remains the same�

��� Combining Measurements with Least Squares

A special case of the method of least squares is often used to combine a number of
measurements of the same quantity� Suppose that a quantity y has been measuredN times
�e�g� by N di�erent experimental groups� yielding independent values yi and estimated
errors �standard deviations� �i for i � �� � � � � N � Since one assumes that the true value is
the same for all the measurements� the value  is a constant �i�e� the function  � f�x� ��
is a constant� and thus the variable x does not actually appear in the problem�� Equation
����� becomes







�� �
NX
i��

�yi � ��

��
i

� ����

where  plays the role of the parameter �� Setting the derivative of �� with respect to 
equal to zero and solving for  gives the LS estimator %�

% �

PN
i�� yi��

�
iPN

i�� ���
�
i

� �����

which is the well�known formula for a weighted average� From the second derivative of
�� one obtains the variance of % �see equation ���
���

V �%	 �
�PN

i�� ���
�
i

� �����

From equation ����� one sees that the variance of the weighted average is smaller
than any of the variances of the individual measurements� Furthermore� if one of the
measured yi has a much smaller variance than the rest� then this measurement will tend
to dominate both in the value and variance of the weighted average�
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Chapter �

The Method of Moments

Although the methods of maximum likelihood and least squares lead to estimators with
optimal or nearly optimal properties� they are sometimes di�cult to implement� A simpler
technique for parameter estimation is the so�called method of moments �MM��

Suppose one has a set of n observations of a random variable x� x�� � � � � xn� and a
hypothesis for the form of the underlying p�d�f� f�x� ��� � � � � �m�� where ��� � � � � �m represent
m unknown parameters� The idea is to �rst construct m linearly independent functions
ai�x�� i � �� � � � �m� The ai�x� are themselves random variables whose expectation values
ei � E�ai�x�	 are functions of the true parameters�

E�ai�x�	 �
Z
ai�x�f�x� ��� � � � � �m�dx � ei���� � � � � �m� � �
���

The functions ai�x� must be chosen such that the expectation values �
��� can be
computed� so that the functions ei���� � � � � �m� can be determined�

Since we have seen in Section �� that the sample mean is an unbiased estimator
for the expectation value of a random variable� we can estimate the expectation value
ei � E�ai�x�	 by the arithmetic mean of the function ai�x� evaluated with the observed
values of x�

%ei � ai �
�

n

nX
j��

ai�xj� � �
��

The MM estimators for the parameters ��� � � � � �m are de�ned by setting the
expectation values ei���� � � � � �m� equal to the corresponding estimators %ei and solving
for the parameters� That is� one solves the following system of m equations for %��� � � � � %�m�

e��%��� � � � � %�m� �
�

n

nX
i��

a��xi� �
���

���

��



em�%��� � � � � %�m� �
�

n

nX
i��

am�xi� �

Possible choices for the functions ai�x� are integer powers of the variable x� x�� � � � � xm�
so that the expectation values E�ai�x�	 � E�xi	 are the ith algebraic moments of x �hence
the name �method of moments��� Other sets of m linearly independent functions are
possible� however� as long as one can compute their expectation values and obtain m
independent functions of the parameters�

We would also like to estimate the covariance matrix for the estimators %��� � � � � %�m� In
order to obtain this we �rst estimate the covariance cov�ai�x�� aj�x�	 using equation ������

cov�ai�x�� aj�x�	 �
�

n� �

nX
k��

�ai�xk�� ai��aj�xk�� aj� � �
���

From this it follows that the covariance cov�ai� aj	 of the arithmetic means of the functions
is

cov�ai� aj	 � cov

�
�

n

nX
k��

ai�xk��
�

n

nX
l��

aj�xl�

�

�
�

n�

nX
k�l��

cov�ai�xk�� aj�xl�	

�
�

n
cov�ai� aj	 � �
���

The last line follows from the fact there are n terms in the sum over k and l with k � l�
which each give cov�ai� aj	� The other n� � n terms have k �� l� for which the covariance
cov�ai�xk�� aj�xl�	 vanishes� since the individual x values are independent� The covariance
matrix cov�%ei� %ej	 for the estimators of the expectation values %ei � ai can thus be estimated
by

cov�%ei� %ej	 �
�

n�n� ��

nX
k��

�ai�xk�� ai� �aj�xk�� aj� � �
���

In order to obtain the covariance matrix cov�%�i� %�j	 for the estimators of the parameters
themselves� one can then use equation �
��� with the error propagation formula ������

cov�%�i� %�j	 �
X
k�l

�%�i
�%ek

�%�j
�%el

cov�%ek� %el	 �
���

Note that even though the value of each measurement xi is used �i�e� there is no
binning of the data� one does not in general exhaust all of the information about the

�



form of the p�d�f� For example with ai�x� � xi� i � �� � � � �m� only information about
the �rst m moments of x is used� but some of the parameters may be more sensitive to
higher moments� For this reason the MM estimators have in general larger variances than
those obtained from the principles of maximum likelihood or least squares� discussed in
Chapters � and �� �See e�g� �Ead��	 Section 
��� �Fro��	 Chapters �� and ��� Because
of its simplicity� however� the method of moments is particularly useful if the estimation
procedure must be repeated a large number of times�

As an example consider the p�d�f� for the continuous random variable x given by

f�x��� �� �
� � �x� �x�

d� � �d� � �d�
� �
�
�

with xmin � x � xmax and where

dn �
�

n
�xnmax � xnmin� � �
���

We have already encountered this p�d�f� in Section ��
� where the parameters � and �
were estimated using the method of maximum likelihood� here for comparison we will use
the method of moments� For this we need two linearly independent functions of x� which
should be chosen such that their expectation values can easily be computed� A rather
obvious choice is

a� � x

a� � x� � �
����

The expectation values e� � E�a�	 and e� � E�a�	 are found to be

e� �
d� � �d� � �d	
d� � �d� � �d�

e� �
d� � �d	 � �d�
d� � �d� � �d�

� �
����

with dn again given by equation �
���� Solving these two equations for � and � and
replacing e� and e� by %e� and %e� gives the MM estimators�

%� �
�%e�d� � d	��%e�d� � d��� �%e�d� � d���%e�d� � d��

�%e�d� � d���%e�d� � d��� �%e�d� � d	��%e�d� � d	�

%� �
�%e�d� � d���%e�d� � d	�� �%e�d� � d���%e�d� � d��

�%e�d� � d���%e�d� � d��� �%e�d� � d	��%e�d� � d	�
� �
���
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From the example of Section ��
 we had a data sample of ��� x values generated
with � � ���� � � ���� xmin � ������ xmax � ����� Using the same data here gives

%� � ����� � �����
%� � ����� � ����� �

The statistical errors are obtained by means of error propagation from the covariance
matrix for %e� and %e�� which is estimated using equation �
���� Similarly one obtains the
correlation coe�cient r � ������

These results are similar to those obtained using maximum likelihood� and the error
estimates are actually slightly smaller� The latter fact is the result� however� of a statistical
�uctuation in estimating the variances� In fact the variances of MM estimators are in
general greater than or equal to those of the ML estimators� a Monte Carlo calculation
gives for the MM case here %��� � ������ %��� � ������ This is to be compared with
%��� � ������ %��� � ���� as obtained in Section ��
 using maximum likelihood� Thus for
this particular example the statistical errors are almost the same using either method�
The method of moments has the advantage� however� that the estimates can be obtained
without having to maximize the likelihood function� which in this example �and most
others� would require a more complicated numerical calculation�

��



Chapter �

Statistical Errors	 Con
dence

Intervals and Limits

��� The Standard Deviation as Statistical Error

In Chapters � ! 
 several methods for estimating properties of p�d�f��s �e�g� moments�
parameters� have been discussed along with techniques for obtaining the variance of the
estimators� The variance �or equivalently its square root� the standard deviation� of an
estimator is a measure of how widely its value would be distributed if the experiment
were to be repeated many times with the same number of observations per experiment�
As such� the standard deviation � is often reported as the statistical uncertainty of a
measurement� and is referred to as the standard error�

For example� suppose one has n observations of a random variable x and a hypothesis
for the p�d�f� f�x� �� which contains an unknown parameter �� From the sample x�� � � � � xn
a function %��x�� � � � � xn� is constructed �using e�g� maximum likelihood� as an estimator
for �� Using one of the techniques discussed in Chapters � � 
 �e�g� analytic method� RCF
bound� Monte Carlo� graphical� the standard deviation of %� can be estimated� Let %�exp be
the value of the estimator actually obtained� and %��
 the estimate of its standard deviation�

In reporting the measurement of � as %�exp�%��
 one means that repeated estimates all based

on n observations of x would be distributed according to a p�d�f� g�%�� centered around
some true value � and true standard deviation ��
� which are estimated to be %�exp and %��
�

Although this de�nition of statistical error bars could in principle be used regardless
of the form of the estimator�s p�d�f� g�%��� it is not� in fact� the conventional de�nition if
g�%�� is not Gaussian� In such cases one uses con�dence intervals as described in the next
section� which can in general lead to asymmetric error bars� In Section ��� it is shown
that if g�%�� is Gaussian� then the so�called �
��� con�dence interval is the same as the
interval covered by %�exp � %��
�

��



��� Classical Condence Intervals 	Exact Method


An alternative �and often equivalent� method of reporting the statistical error of a
measurement is with a so�called con�dence interval� Suppose as above that one has
n observations of a random variable x which can be used to evaluate an estimator
%��x�� � � � � xn� for a parameter �� and that the value obtained is %�exp� Furthermore� suppose
that based on e�g� an analytical calculation or a Monte Carlo study� one knows the p�d�f
of %�� g�%�� ��� which contains the true value � as a parameter� That is� the real value of �
is not known� but for a given �� one knows what the p�d�f� of %� would be�

Figure ��� shows a probability density for an estimator %� for a particular value of the
true parameter �� From g�%�� �� one can determine the value u� such that there is a �xed
probability � to observe %� � u�� and similarly the value v� such that there is a probability

� to observe %� � v�� The values u� and v� depend on the true value of �� and are thus
de�ned by requiring

� � P �%� � u����� �
Z �

u��
�
g�%�� ��d%� � ��G�u����� �� � �����

and

� � P �%� � v����� �
Z v��
�

��
g�%�� ��d%� � G�v����� �� � ����

where G is the cumulative distribution corresponding to the p�d�f� g�%�� ���

Figure ���� A p�d�f� g���� �� for an

estimator �� for a given value of the true

parameter �� The two shaded regions

show the values of �� � v� � which has a

probability 
� and �� � u�� which has a

probability ��

Figure �� shows an example of how the functions u���� and v���� might appear as a
function of the true value of �� The region between the two curves is called the con�dence
belt� The probability for the estimator to be inside the belt� regardless of the value of ��
is given by

P �v���� � %� � u����� � �� � � � � �����

��



Figure ��� Construction of the con�

�dence interval �a� b� given an observed

value ��exp of the estimator �� for the pa�

rameter �� �See text��

As long as u���� and v���� are monotonically increasing functions of �� which in

general should be the case if %� is to be a good estimator for �� one can determine the
inverse functions

a�%�� � u��� �%�� �

b�%�� � v��� �%�� �
�����

The inequalities

%� � u���� �

%� � v���� �
�����

then imply respectively

a�%�� � � �

b�%�� � � �
�����

Equations ����� and ���� thus become

P �a�%�� � �� � � �

P �b�%�� � �� � � �
�����

or taken together�

P �a�%�� � � � b�%��� � �� � � � � ���
�
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If the functions a�%�� and b�%�� are evaluated with the value of the estimator actually
obtained in the experiment� %�exp� then this determines two values� a and b� as illustrated
in Fig� ��� The interval �a� b	 is called a con�dence interval at a con�dence level� of
� � � � �� The idea behind its construction is that equations ������ and hence also
���
�� hold regardless of the true value of �� which� of course� is unknown� It should
be emphasized that a and b are random values� since they depend on the estimator %��
which is itself a function of the data� If the experiment were repeated many times� the
interval �a� b	 would include the true value of the parameter � in a fraction � � � � � of
the experiments�

In some situations one may only be interested in a one�sided con�dence interval or
limit� That is� the value a represents a lower limit on the parameter � such that a � � with
the probability ���� Similarly� b represents an upper limit on � such that P �� � b� � ����

Two�sided intervals �i�e� both a and b speci�ed�� are not uniquely determined by the
con�dence level ������ One often chooses� for example� � � � � �� giving a so�called
central con�dence interval with probability �� �� Note that a central con�dence interval
does not necessarily mean that a and b are equidistant from the estimated value %�� but
only that the probabilities � and � are equal�

By construction the value a gives the �hypothetical� value of the true parameter � for
which a fraction � of repeated estimates %� would be higher than the one actually obtained�
%�exp� as is illustrated in Fig� ���� Similarly� b is the value of � for which a fraction � of the

estimates would be lower than %�exp� That is� taking %�exp � u��a� � v��b�� equations �����
and ���� become

� �
Z �

�
exp
g�%�� a� d%� � ��G�%�exp� a� �

� �
Z �
exp

��
g�%�� b� d%� � G�%�exp� b� � �����

The previously described procedure to determine the con�dence interval is thus equivalent
to solving ����� for a and b� e�g� numerically�

The con�dence interval �a� b	 is often expressed by reporting the result of a
measurement as %��d�c � where %� is the estimated value� and c � %� � a and d � b � %� are

usually displayed as error bars� In many cases the p�d�f� g�%�� �� is approximately Gaussian�
so that an interval of plus or minus one standard deviation around the measured value
corresponds to a central con�dence interval with � � � � ���
� �see Section ����� The
�
��� central con�dence interval is usually adopted as the conventional de�nition for error
bars even when the p�d�f� of the estimator is not Gaussian�

If� for example� the result of an experiment is reported as %��d�c � ���������
������ it is meant

that if one were to construct the interval �%��c� %��d	 according to the prescription described

�This should not be confused with the con�dence level of a goodness�of��t test �see Section �����

�




Figure ���� �a� The p�d�f� g���� a�� where
a is the lower limit of the con�dence

interval� If the true parameter � were

equal to a� the estimates �� would be

greater than the one actually observed
��exp with a probability �� �b� The p�d�f�

g���� b�� where b is the upper limit of the

con�dence interval� If � were equal to b�
�� would be observed less than ��exp with

probability 
�

above in a large number of similar experiments with the same number of measurements
per experiment� then the interval would include the true value � in ����� of the cases�
It does not mean that the probability �de�ned in the sense of limiting relative frequency�
that the true value of � is in the �xed interval ������ ����	 is � � � � �� In the limiting
frequency interpretation� the true parameter � is not a random variable and is assumed
to not �uctuate from experiment to experiment� In this sense the probability that � is
in ������ ����	 is either � or �� but we do not know which� The interval itself� however� is
subject to �uctuations since it is constructed from the data�

A di�culty in constructing con�dence intervals is that the p�d�f� of the estimator
g�%�� ��� or equivalently the cumulative distribution G�%�� ��� must be known� An example
is given in Section ���� where the p�d�f� for the estimator of the mean � of an exponential
distribution is derived� and from this a con�dence interval for � is determined� In many
practical applications� estimators are Gaussian distributed �at least approximately�� In
this case the con�dence interval can be determined easily� this is treated in detail in the
next section� Even in the case of a non�Gaussian estimator� however� a simple approximate
technique can be applied using the likelihood function� this is described in Section ����

��



��� Condence Interval for Gaussian Distributed

Estimator

A simple and very important application of a con�dence interval is when the distribution of
%� is Gaussian with mean � and standard deviation ��
� That is� the cumulative distribution

of %� is

G�%�� �� ��
� �
Z �


��
�q
���

�


exp


��%�� � ���

��
�


�
d%�� � ������

This is a commonly occurring situation since� according to the Central Limit theorem�
any estimator that is a linear function of a sum of random variables becomes Gaussian
in the large sample limit� We will see that for this case� the somewhat complicated
procedure explained in the previous section results in a particularly simple prescription
for determining the con�dence interval�

Suppose that the standard deviation ��
 is known� and that the experiment has resulted

in an estimate %�exp for �� According to equations ������ the con�dence interval �a� b	 is
determined by solving the equations

� � � �G�%�exp� a� ��
� � �� #



%�exp � a

��


�
�

� � G�%�exp� b� ��
� � #



%�exp � b

��


�
� ������

for a and b� where G has been expressed using the cumulative distribution of the standard
Gaussian # ���� �see also ������ This gives

a � %�exp � ��
 #
����� �� �

b � %�exp � ��
 #
����� �� �

�����

Here #�� is the inverse function of #� i�e� the quantile of the standard Gaussian� and in
order to make the two equations symmetric we have used #����� � �#���� � ���

The quantiles #���� � �� and #���� � �� represent how far away the interval limits
a and b are located with respect to the estimate %�exp in units of the standard deviation
��
� The relationship between the quantiles of the standard Gaussian distribution and
the con�dence level is illustrated in Fig� ����a� for central and Fig� ����b� for one�sided
con�dence intervals�

Consider a central con�dence interval with � � � � ��� The con�dence level ��� is
often chosen such that the quantile is a small integer� e�g� #���� � ��� � �� � �� � � ��

���



Figure ���� The standard Gaussian

p�d�f� ��x� showing the relationship

between the quantiles ��� and the con�

�dence level for �a� a central con�dence

interval and �b� a one�sided con�dence

interval�

Similarly� for one�sided intervals �i�e� limits� one often chooses a small integer for
#�������� Commonly used values for both central and one�sided intervals are shown in
Table ���� Alternatively one can choose a round number for the con�dence level instead
of for the quantile� Commonly used values are shown in Table ��� Other possible values
can be obtained from �Bra�� Fro��� Dud

	 or from computer routines �e�g� �CER��	�
routine G�����

Quantile of Con�dence level for Quantile of Con�dence level for
standard Gaussian central interval standard Gaussian one�sided interval

#���� � ��� �� � #���� � �� �� �

� ���
� � ��
���
 ������  �����
� ������ � ����
�

Table ���� The values of the con�dence level for di�erent values of the quantile ��� for central and
one�sided con�dence intervals� The relationship between the quantile and con�dence level is illustrated
in Fig� ����

For the �
��� central con�dence interval one has � � � � ��� with #�������� � ��
i�e� a �� � error bar�� This results in the simple prescription�

�a� b	 � �%�exp � ��
�
%�exp � ��
	 � ������

���



Con�dence level for Quantile of Con�dence level for Quantile of
for central interval standard Gaussian one�sided interval standard Gaussian

� � � #����� ��� �� � #����� ��
���� ����� ���� ��

���� ����� ���� �����
���� ���� ���� ���

Table ��� The values of the quantile ��� for di�erent values of the con�dence level for central and
one�sided con�dence intervals� The relationship between the quantile and con�dence level is illustrated
in Fig� ����

Thus for the case of a Gaussian distributed estimator� the �
��� central con�dence interval
is given by the estimated value plus or minus one standard deviation� The �nal result of
the measurement of � is then simply reported as %�exp � ��
�

If the standard deviation ��
 is not known a priori but rather is estimated from the
data� then the situation is in principle somewhat more complicated� If� for example� the
estimated standard deviation %��
 had been used instead of ��
� then it would not have been

so simple to relate the cumulative distributionG�%�� �� %��
� to #� the cumulative distribution

of the standard Gaussian� since %��
 depends in general on %�� In practice� however� the recipe
given above can still be applied using the estimate %��
 instead of ��
� as long as %��
 is a
su�ciently good approximation of the true standard deviation� e�g� in the large sample
limit��

Exact determination of con�dence intervals becomes more di�cult if the p�d�f� of the
estimator g�%�� �� is not Gaussian� or worse� if it is not known analytically� For a non�
Gaussian p�d�f� it is sometimes possible to transform the parameter � � ���� such that
p�d�f� for the estimator %� is approximately Gaussian� The con�dence interval for the
transformed parameter � can then be converted back into an interval for �� An example
of this technique is given in Section ����

��� Condence Interval for the Mean of the Poisson

Distribution

Along with the Gaussian distributed estimator� another commonly occurring case is where
the outcome of a measurement is a Poisson variable k� with k � �� �� � � � �� Recall from
����� that the probability to observe k is

f�k�� �
k

k"
e�� � ������

�For the small sample case where �� represents the mean of n Gaussian random variables of unknown
standard deviation� the con�dence interval can be determined by relating the cumulative distribution
G���� �� ����� to Student�s t�distribution� see e�g� �Fro���� �Dud��� Section 
����

��



and that the parameter  is equal to the expectation value E�k	� The maximum�likelihood
estimator for  can easily be found to be % � k� Suppose a single measurement has resulted
in the value %exp � kexp� and based on this one would like to construct a con�dence interval
for the mean �

For the case of a discrete variable� the procedure for determining the con�dence interval
described in Section �� cannot be directly applied� This is because the quantities that
determine the con�dence belt� u���� and v����� do not exist for all values of the parameter
�� For the Poisson case� for example� we would need to �nd u��� and v��� such that

P �% � u���� � � and P �% � v���� � � for arbitrary � and � and for all values of the

parameter � But if � and � are �xed� then because % only takes on discrete values� these
equations hold in general only for particular values of �

A con�dence interval �a� b	 can still be determined� however� by using equations ������
For the case of a discrete random variable and a parameter  these become

� � P �% � %exp� a� �

� � P �% � %exp� b� � ������

and in particular for a Poisson variable one has

� �
�X

k�kexp

f�k� a� � ��
kexp��X
k��

f�k� a� � �� e�a
kexp��X
k��

ak

k"
�

� �
kexpX
k��

f�k� b� � e�b
kexpX
k��

bk

k"
� ������

For any estimate % � kexp and given probabilities � and � these equations can be
solved numerically for a and b� Note that the lower limit a cannot be determined if
kexp � �� Equations ������ say that if  � a � � b�� then the probability is � ��� to
observe a value greater �less� than or equal to the one actually observed� The fact that
kexp is included in the inequalities leads to a conservatively large con�dence interval� i�e�

P � � a� � � � �

P � � b� � � � �

P �a �  � b� � � � �� � � ������

An important special case is when the observed number kexp is zero� and one is
interested in establishing an upper limit b� Equation ������ becomes

���



� �
�X

k��

bk e�b

k"
� e�b � ����
�

or b � � log �� For the upper limit at a con�dence level of � � � � ��� one has
b � � log������ � ���� � �� Thus if the number of occurrences of some rare event is
treated as a Poisson variable with mean � and one looks for events of this type and �nds
none� then the ��� upper limit on the mean is �� That is� if the mean were in fact  � ��
then the probability to observe zero would be ���

��� Condence Interval for Correlation Coe�cient�

Transformation of Parameters

In many situations one can assume that the p�d�f� for an estimator is Gaussian� and thus
use the results of the previous section to obtain a con�dence interval� As an example
where this is often not the case� consider the correlation coe�cient 	 of two continuous
random variables x and y distributed according to a two�dimensional Gaussian p�d�f�
f�x� y� �equation ��
��� Suppose we have a sample of n independent observations of x
and y� and we would like to determine a con�dence interval for 	 based on the estimator
r ������

r �

Pn
i���xi � x��yi � y��Pn

j���xj � x�� 	Pn
k���yk � y��

���� � ������

The p�d�f� g�r� 	� n� has a rather complicated form� it is given e�g� in �Mui
	 p� ����
A graph is shown in Fig� ��� for a sample of size n � � for several values of the true
correlation coe�cient 	� One can see that g�r� 	� n� is asymmetric and that the degree of
asymmetry depends on 	� It can be shown that g�r� 	� n� approaches a Gaussian in the
large sample limit� but for this approximation to be valid� one requires fairly large sample�
�At least n � ��� is recommended �Bra�	�� For smaller samples such as in Fig� ���� one
cannot rely on the Gaussian approximation for g�r� 	� n�� and thus one cannot use �����
to determine the con�dence interval�

In principle one is then forced to return to the procedure of Section ��� which in
this case would be quite di�cult computationally� There exists� however� a much simpler
method to determine an approximate con�dence interval for 	� It has been shown by
Fisher that the p�d�f� of the statistic

z � tanh��r �
�


log

� � r

�� r
�����

approaches the Gaussian limit much more quickly as a function of the sample size n than
that of r �see �Fis��	 and references therein�� This can be used as an estimator for ��
de�ned as

���



Figure ���� Probability

density f�r� �� n� for the estimator r of

the correlation coe�cient � for a sample

of size n 	 ��� and various values of ��

� � tanh��	 �
�


log

� � 	

�� 	
� �����

One can show that the expectation value of z is approximately given by

E�z	 �
�


log

� � 	

� � 	
�

	

�n � ��
����

and its variance by

V �z	 �
�

n� �
� �����

We will assume that the sample is large enough that z has a Gaussian p�d�f� and that the
bias term 	��n � �� in ���� can be neglected� Given a sample of n measurements of x
and y� z can be determined according to equation ����� and its standard deviation %�z can
be estimated by using the variance from equation ������ One can use these to determine
the interval �z � %�z� z � %�z	� or in general the interval �a� b	 given by ������ These give
the lower limit a for � with con�dence level � � � and an upper limit b with con�dence
level � � �� The con�dence interval �a� b	 for � � tanh��	 can then be converted back
to an interval �A�B	 for 	 simply by using the inverse of the transformation ������ i�e�
A � tanha and B � tanhb�

Consider for example a sample of size n � � for which one has obtained the
estimate r � ���� From equation ������ the standard deviation of r can be estimated
as %�r � �� � r���

p
n � ����
� If one were to make the incorrect approximation that

r is Gaussian distributed for such a small sample� this would lead to a �
��� central
con�dence interval for 	 of ������ ����
	� or ������� �����	 at a con�dence level of ����

���



Thus since the sample correlation coe�cient r is almost three times the standard error
%�r� one might be led to the incorrect conclusion that there is signi�cant evidence for a
non�zero value of 	� i�e� a ��� e�ect�� By using the Fisher z�transformation� however� one
obtains z � ����� and %�z � ����� This corresponds to a ��� central con�dence interval
of ������� �����	 for �� and ������� ��
�	 for 	� Thus the ��� central con�dence interval
includes zero�

Recall that the lower limit of the con�dence interval is equal to the hypothetical value
of the true parameter such that r would be observed higher than the one actually observed
with the probability �� One can ask� for example� what the con�dence level would be for
a lower limit of zero� If we had assumed that g�r� 	� n� was Gaussian� the corresponding
probability would be ������ By using the z�transformation� however� the con�dence level
for a limit of zero is ���� i�e� if 	 were zero one would obtain r greater than or equal to
the one observed� r � ���� with a probability of ���� The actual evidence for a non�zero
correlation is therefore not nearly as strong as one would have concluded by simply using
the standard error %�r with the assumption that r is Gaussian�

��� Condence Intervals Using the Likelihood

Function or �

Even in the case of a non�Gaussian estimator� the con�dence interval can be determined
with a simple approximate technique which makes use of the likelihood function �or
equivalently the �� function where one has L � exp�������� Consider �rst a maximum�
likelihood estimator %� for a parameter � in the large sample limit� In this limit it can be
shown that the p�d�f� g�%�� �� becomes Gaussian�

g�%�� �� �
�q
���

�


exp


��%� � ���

��
�


�
� �����

centered about the true value of the parameter � and with a standard deviation ��
�

Also in the large sample limit� one can show that the likelihood function itself becomes
Gaussian in form centered about the ML estimate %��

L��� � Lmax exp


��� � %���

��
�


�
� �����

From the RCF inequality ������� which for an ML estimator in the large sample limit
becomes an equality� one obtains that ��
 in the likelihood function ����� is the same as
in the p�d�f� ������ This has already been encountered in Section ���� equation ������
where the likelihood function was used to estimate the variance of an estimator %�� This
led to a simple prescription for estimating ��
� since by changing the parameter � by N

���



standard deviations� the log�likelihood function decreases by N�� from its maximum
value�

log L�%� �N ��
� � logLmax � N�


� �����

From the results of the previous section� however� we know that for a Gaussian
distributed estimator %� the �
��� central con�dence interval can be constructed from
the estimator and its estimated standard deviation %��
 as �a� b	 � �%�� %��
�

%�� %��
	� �or more
generally according to ����� for a con�dence level of ����� The �
��� central con�dence
interval is thus given by the values of � at which the log�likelihood function decreases by
�� from its maximum value� �This is assuming� of course� that %� is the ML estimator
and thus corresponds to the maximum of the likelihood function��

In fact� it can be shown that even if the likelihood function is not a Gaussian function
of the parameters� the central con�dence interval �a� b	 � �%� � c� %� � d	 can still be
approximated by using

logL�%��d�c � � logLmax � N�


� �����

where N � #���� � ��� is the quantile of the standard Gaussian corresponding to the
desired con�dence level � � �� �For example� N � � for a �
��� central con�dence
interval� see Table ����� In the case of a least�squares �t with Gaussian errors� i�e� with
logL � ����� the prescription becomes

���%��d�c � � ��
min �N� � ���
�

A heuristic proof that the intervals de�ned by equations ����� and ���
� approximate
the classical con�dence intervals of Section �� is given in �Ead��� Fro��	� Equations �����
and ���
� represent one of the most commonly used methods for estimating statistical
uncertainties� One should keep in mind� however� that the correspondence with the
method of Section �� is only exact in the large sample limit� Several authors �e�g�
�Fro��� Hud��	� have recommended using the term �likelihood interval� for an interval
obtained from the likelihood function� Regardless of the name� it should be kept in mind
that it is interpreted here as an approximation to the classical con�dence interval� i�e�
a random interval constructed so as to include the true parameter value with a given
probability�

As an example consider the estimator %� � �
n

Pn
i�� ti for the parameter � of an

exponential distribution� as in the example of Section �� �see also Section ����� There�
the maximum�likelihood method was used to estimate � given a sample of n � ��
measurements of an exponentially distributed random variable t� This sample was
su�ciently large that the standard deviation ��� could be approximated by the values
of � where the log�likelihood function decreased by �� from its maximum �see Fig� �����
This gave %� � ���� and %��� � �%�� � �%�� � �����

���



Figure ��� shows the log�likelihood function logL�� � as a function of � for a sample
of only n � � measurements of an exponentially distributed random variable� generated
using the Monte Carlo method with the true parameter � � �� Because of the smaller
sample size the log�likelihood function is less parabolic than before�

Figure ���� Log�likelihood function

logL�� � as a function of � for a

sample of n 	  measurements� The

interval �������
�

� �������� determined by

logL�� � 	 logLmax � 
�� can be used to
approximate the ���� central con�dence

interval�

One could still use the half�width of the interval determined by logLmax � �� to
approximate the standard deviation ��� � but this is not really what we want� The statistical
uncertainty is better communicated by giving the con�dence interval� since one then knows
the probability that the interval covers the true parameter value� Furthermore� by giving
a central con�dence interval �and hence asymmetric errors� �%�� �� �%���� one has equal
probabilities for the true parameter to be higher or lower than the interval limits� As
illustrated in Fig� ���� the central con�dence interval can be approximated by the values
of � where logL�� � � log Lmax � ��� which gives �%� � �%��� %� � �%��	 � ������ ����	 or
%� � ��
������

������

In fact� the same could have been done in Section ��� by giving the result there
as %� � ����������

������� Whether one chooses this method or simply reports an averaged
symmetric error �i�e� %� � ���� � ����� will depend on how accurately the statistical error
needs to be given� For the case of n � � shown in Fig� ���� the error bars are su�ciently
asymmetric that one would probably want to use the �
��� central con�dence interval
and give the result as %� � ��
������

������

��� Multidimensional Condence Regions

In Section ��� a con�dence interval �a� b	 was constructed so as to have a certain
probability � � � of containing a parameter �� In order to generalize this to the case
of n parameters� �� � ���� � � � � �n�� one might attempt to �nd an n�dimensional con�dence

��




interval ��a��b	 constructed so as to have a given probability that ai 
 �i 
 bi� simultaneously
for all i� This turns out to be computationally di�cult� and is rarely done�

It is nevertheless quite simple to construct a con�dence region in the parameter space
such that the true parameter �� is contained within the region with a given probability
�at least approximately�� This region will not have the form ai 
 �i 
 bi� i � �� � � � � n�
but will be more complicated� approaching an n�dimensional hyperellipsoid in the large
sample limit�

As in the single parameter case� one makes use of the fact that both the joint p�d�f�

for the estimator
�%� � �%��� � � � � %�n� as well as the likelihood function become Gaussian in

the large sample limit� That is� the joint p�d�f� of
�%� becomes

g�
�%�j��� � �

���n��jV j��� exp

��


Q�
�%�� ���

�
� �����

where Q is de�ned as

Q�
�%�� ��� � �

�%� � ���TV ����%� � ��� � ������

Here V �� is the inverse covariance matrix and the superscript T indicates a transposed

�i�e� row� vector� Contours of constant g�
�%�j��� correspond to constant Q�

�%�� ���� These are

ellipses �or for more than two dimensions� hyperellipsoids� in
�%��space centered about the

true parameters ��� Figure ����a� shows a contour of constant Q�
�%��� where ��true represents

a particular value of ���

Also as in the one�dimensional case� one can show that the likelihood function L����

takes on a Gaussian form centered about the ML estimators
�%��

L���� � Lmax exp

��


��� ��%��TV ����� ��%��

�
� Lmax exp


��


Q����

�%��
�
� ������

The inverse covariance matrix V �� is the same here as in ������ this can be seen from the
RCF inequality ����� and using the fact that the ML estimators attain the RCF bound
in the large sample limit� The quantity Q here is regarded as a function of the parameters
�� which has its maximum at the estimates

�%�� This is shown in Fig� ����b� for
�%� equal

to a particular value
�%�exp� Because of the symmetry between �� and

�%� in the de�nition
������� the quantities Q have the same value in both the p�d�f� ����� and in the likelihood

function ������� i�e� Q�
�%�� ��� � Q����

�%���

As discussed in Section ���� it can be shown that if
�%� is described by an n�dimensional

Gaussian p�d�f� g�
�%�� ���� then the quantity Q�

�%�� ��� is distributed according to a ���

distribution for n degrees of freedom� The statement that Q�
�%�� ��� is less than some

���



Figure ���� �a� A contour of constant g����� ��true� �i�e� constant Q�
���� ��true�� in

����space� �b� A contour

of constant L���� corresponding to constant Q�
���exp� ��� in ���space� The values ��true and

���exp represent

particular �i�e� constant� values of �� and
���� respectively

value Q�� i�e� that the estimate is within a certain distance of the true value ��� implies

Q����
�%�� 
 Q�� i�e� that the true value � is within the same distance of the estimate� The

two events therefore have the same probability�

P �Q����
�%�� � Q�� �

Z Q�

�
f�z�n�dz � �����

where f�z�n� is the �� distribution for n degrees of freedom �equation ������ The value
Q� is chosen to correspond to a given probability content�

Z Q�

�
f�z�n�dz � � � � � ������

That is�

Q� � F����� ��n� ������

is the quantile of order � � � of the ���distribution� The region of ���space de�ned by

Q����
�%�� � Q� is called a con�dence region with the con�dence level ���� For a likelihood

function of Gaussian form ������ it can be constructed by �nding the values of �� at which
the log�likelihood function decreases by Q�� from its maximum value�

log L���� � log Lmax � Q�


� ������

���



As in the single parameter case� one can still use the prescription given by ������ even if
the likelihood function is not Gaussian� in which case the probability statement ����� is
only approximate� For an increasing number of parameters� the approach to the Gaussian
limit becomes slower as a function of the sample size� and furthermore it is di�cult to
quantify when a sample is large enough for ����� to apply� If needed� one can determine
the probability that a region constructed according to ������ includes the true parameter
by means of a Monte Carlo calculation�

Quantiles of the ���distribution Q� � f����� ��n� for several con�dence levels �� �
and n � �� � �� �� � parameters are given in Table ���� Values of the con�dence level are
given for various values of the quantile Q� are given in Table ����
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Table ���� The values of the con�dence level 
 � � for di�erent values of Q� and for n 	 
� �� �� �� 
�tted parameters�
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Table ���� The values of the quantileQ� for di�erent values of the con�dence level 
�� for n 	 
� �� �� �� 
�tted parameters�

For n � � the expression ������ for Q� can be shown to imply

q
Q� � #����� ��� � ������

where #�� is the inverse function of the standard normal distribution� The procedure

here thus reduces to that for a single parameter given in Section ���� where N �
q
Q� is

the half width of the interval in standard deviations �see equations ������ ������� The
values for n � � in Tables ��� and ��� are thus related to those in Tables ��� and �� by
equation �������

For increasing n� the con�dence level for a given Q� decreases� For example� in the
single parameter case� Q� � � corresponds to � � � � ���
�� For n � � Q� � � gives a
con�dence level of only ������ and in order to obtain �� � � ���
� one needs Q� � ����
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We should emphasize that� as in the single parameter case� the con�dence region

Q����
�%�� � Q� is a random region in ���space� The con�dence region varies upon repetition

of the experiment� since
�%� is a random variable� The true parameters� on the other hand�

are unknown constants�

��� Bayesian Intervals

An alternative approach to quantifying statistical uncertainty is by use of subjective
probability as introduced in Section ��� Here both the result of a measurement x and a
parameter � are treated as random variables� One�s knowledge about � is summarized by
its probability density p��� which gives the degree of belief that � has a given value�

Consider again the situation above with n observations of a random variable x�
x�� � � � � xn� assumed to be distributed according to some p�d�f� f�x� �� which depends
on an unknown parameter �� �The Bayesian approach can easily be generalized to several

parameters �� � ���� � � � � �m�� For simplicity we will consider here only a single parameter��
Recall that the likelihood function is the joint p�d�f� for the data �x � �x�� � � � � xn� for a
given value of �� and thus can be written

L��xj�� �
nY
i��

f�xi� �� � ������

What we would like is the conditional p�d�f� for � given the data p��j�x�� This is obtained
from the likelihood via Bayes� theorem �equation ������

p��j�x� � L��xj������R
L��xj��������d�� � ����
�

where ���� is the prior probability density for �� re�ecting the state of knowledge of �
before consideration of the data� p��j�x� is called the posterior probability density for �
given the data �x�

In Bayesian statistics all information about � is contained in the posterior p�d�f� p��j�x��
Since it is rarely practical to report the entire p�d�f�� especially when � is multidimensional�
an appropriate way of summarizing it must be found� The �rst step in this direction is
an estimator� which clearly should be the value of � at which p��j�x� is a maximum� In
practice Bayesian estimators are not used much in the physical sciences� with the classical
methods of maximum likelihood and least squares being more widely accepted� Note�
however� that if the prior p�d�f� ���� is taken to be a constant� then p��j�x� is proportional
to the likelihood function L��xj�� and the Bayesian and ML estimators coincide� As long
as ���� is relatively �at compared to L��xj��� this statement still holds approximately�
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In addition to giving an estimator of the single most probable value of �� the
posterior density� p��� can be summarized by giving an interval �a� b	 such that for given
probabilities � and � one has

� �
Z a

��
p��j�x� d�

� �
Z �

b
p��j�x� d� � ������

Choosing � � � then gives a central interval� with e�g� � � � � � � �
���� Another
possibility is to choose � and � such that all values of p��� inside the interval �a� b	 are
higher than any values outside� which implies p�a� � p�b�� One can easily show that this
gives the shortest possible interval�

The Bayesian approach expressed by equation ����
� gives a method for updating one�s
state of knowledge in light of newly acquired data� To do this� however� one must specify
what the state of knowledge was before the measurement via the prior density ����� If
nothing is known previously� one may assume that all values of � are equally likely� This
assumption is sometimes calledBayes� postulate� expressed here by ���� � constant� If the
range of � is in�nite then a constant ���� cannot be normalized� and is called an improper

prior� This is usually not� in fact� a problem since ���� always appears multiplied by the
likelihood function� resulting in a normalizable posterior p�d�f� For some improper prior
densities this may not always be the case� see e�g� equation ������ in the next section�

In cases where � can only take on discrete values� the use of Bayes� postulate is
unambiguously de�ned� If � is continuous� however� the situation is more di�cult�
Suppose one has a continuous parameter � de�ned in the interval ��� ��	� One would
then take the prior p�d�f� �
��� � ��� in equation ����
� to get the posterior density p
����
Another experimenter� however� could decide that some nonlinear function a��� was more
appropriate as the parameter� Using the techniques for transformation of variables� one
could �nd the corresponding density pa�a� � p
���jd��daj� On the other hand� one could
express the likelihood function directly in terms of a� and assume that the prior density
�a�a� is constant� For example� if a � ��� then �a�a� � ���� in the interval ��� ���	� Using
this in equation ����
�� however� would lead to a posterior density in general di�erent
from the pa�a� obtained by transformation of variables� That is� complete ignorance
about � ��
��� � constant� implies a nonuniform prior density for a nonlinear function of
� ��a�a� �� constant��

An important case where Bayesian intervals have proven useful is when one has
objective prior information about the value of a parameter� such as a physical boundary�
With classical con�dence intervals there is no easy way of incorporating such information�
whereas this is straightforward when using the Bayesian approach� This situation is
treated in the next section�

�In some cases we will suppress reference to the data �x in the posterior p�d�f� and simply write p����
The conditional probability for � given �x is implied�
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��� Limits Near a Physical Boundary

Often the purpose of an experiment is to search for a new e�ect� the existence of which
would imply that a certain parameter is not equal to zero� For example� one could attempt
to measure the mass of the neutrino� which in the standard theory is massless� If the data
yield a value of the parameter signi�cantly di�erent from zero� then the new e�ect has
been discovered� and the parameter�s value and a con�dence interval to re�ect its error
are given as the result� If� on the other hand� the data result in a �tted value of the
parameter that is consistent with zero� then the result of the experiment is reported by
giving an upper limit on the parameter� �A similar situation occurs when absence of the
new e�ect corresponds to a parameter being large or in�nite� one then places a lower
limit� For simplicity we will consider here only upper limits��

If there are no restrictions on the possible values of the parameter� then the classical
and Bayesian techniques described in the previous sections will lead to similar �or
identical� results� albeit with di�erences in their interpretation� A signi�cant di�erence
in the two approaches becomes evident� however� if the parameter is only allowed to take
on values in a restricted range� In particle physics� for example� this is the case with the
neutrino mass mentioned above and with quantities such as cross sections and particle
lifetimes� the true values of which must be positive �or zero� by de�nition�

The di�culty arises when an estimator can take on values in the excluded region� This
can occur if the estimator %� for a parameter � is of the form %� � x� y� where both x and
y are random variables� i�e� they have random measurement errors� The mass squared of
a particle� for example� can be estimated by measuring independently its energy E and
momentum p� and using dm� � E� � p�� Although the mass squared should come out
positive� measurement errors in E� and p� could result in a negative value for dm�� Then
the question is how to place a limit on m�� or more generally on a parameter � when the
estimate is in or near an excluded region�

Consider further the example of an estimator %� � x� y where x and y are Gaussian
variables with means �x� �y and variances ��

x� �
�
y� One can show that the di�erence

%� � x� y is also a Gaussian variable with � � �x��y and ��
�

� ��

x� ��
y� �This can easily

be shown using characteristic functions as described in Chapter ����

Assume that � is known a priori to be non�negative �e�g� like the mass squared�� and
suppose the experiment has resulted in a value %�exp for the estimator %�� According to
������ the upper limit �up at a con�dence level �� � is

�up � %�exp � ��
 #
����� �� � ������

For the commonly used ��� con�dence level one has from Table �� #�������� � ������

The interval ���� �up	 is constructed to include the true value � with a probability of
���� regardless what � actually is� Suppose now that the standard deviation is ��
 � �� and

one obtains %�exp � ���� From equation ������ one obtains �up � ������ at a con�dence

level of ���� Not only is %�exp in the forbidden region �as half of the estimates should be
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if � is really zero� but the upper limit� i�e� the entire con�dence interval� is below zero
as well� This is not particularly unusual� and in fact is expected to happen in �� of the
experiments if the true value of � is zero�

As far as the de�nition of the con�dence interval is concerned� nothing fundamental
has gone wrong� The interval was designed to cover the true value of � in a certain fraction
of repeated experiments� and we have obviously obtained one of those experiments where
� is not in the interval� But this is not a very satisfying result� since it was already known
a priori that � is greater than zero �and certainly greater than �up � ������� without
having to perform the experiment�

Regardless of the upper limit� it is important to report the actual value of the estimate
obtained and its standard deviation� i�e� %�exp���
� even if the estimate is in the physically
excluded region� In this way� the average of many experiments �e�g� as in Section ����
will converge to the correct value �as long as the estimator is unbiased�� In cases where
the p�d�f� of %� is signi�cantly non�Gaussian� the entire likelihood function L��� should be
given� which can be combined with that of other experiments as discussed in Section �����

Nevertheless� most experimenters want to report some sort of upper limit� and in
situations such as the one described above a number of techniques have been proposed
�see e�g� �Hig
�� Jam��	�� There is unfortunately no established convention on how this
should be done� and one should therefore state what procedure was used�

As a solution to the di�culties posed by an upper limit in an unphysical region� one
might be tempted to simply increase the con�dence level until the limit enters the allowed
region� In the previous example� if we had taken a con�dence level � � � � ����� then
from Table �� one has #�������� � ���� giving �up � ����� This would lead one
to quote an upper limit that is smaller than the intrinsic resolution of the experiment
���
 � �� at a very high con�dence level of ���� which is clearly misleading� Worse� of
course� would be to adjust the con�dence level to give an arbitrarily small limit� e�g�
#���������� � ������� or �up � ���� at a con�dence level of ������"

In order to avoid this type of di�culty� a commonly used technique is to simply shift
a negative estimate to zero before applying equation ������� i�e�

�up � max�%�exp� �� � ��
 #
����� �� � ������

In this way the upper limit is always at least the same order of magnitude as resolution of
the experiment� If %�exp is positive� the limit coincides with that of the classical procedure�
This technique has a certain intuitive appeal and is often used� but the interpretation
as an interval that will cover the true parameter value with probability � � � no longer
applies� The coverage probability is clearly greater than � � �� since the shifted upper
limit ������ is in all cases greater than or equal to the classical one �������

Another alternative is to report a Bayesian upper limit as discussed in Section ��
�
Here one has the advantage that prior knowledge� e�g� � � �� can easily be incorporated
by setting the prior p�d�f� ���� to zero in the excluded region� Bayes� theorem then gives
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a posterior probability p��� with p��� � � for � 
 �� The upper limit is thus determined
by

�� � �
Z 
up

�
p���d� �

R 
up
� L������� d�R�
� L������� d�

� �����

The di�culties here have already been mentioned in Section ��
� namely� that there
is no unique way to specify the prior density ����� A common choice is

���� �

�
� � 
 �
� � � �

� ������

The prescription says in e�ect to normalize the likelihood function to unit area in the
physical region� and then integrate it out to �up such that the fraction of area covered is
���� This procedure has been recommended by� among others� the Particle Data Group
�PDG��	� Although the method is simple� it has some conceptual drawbacks� For the case
where one knows � � � �e�g� the neutrino mass� one does not really believe that � 
 � 
 �
has the same prior probability as ��	� 
 � 
 ��	� � �� Furthermore� the upper limit
derived from ���� � constant is not invariant with respect to a nonlinear transformation
of the parameter�

It has been argued �Jef�
	 that in cases where � � � but with no other prior
information� one should use

���� �

�
� � � �
�



� � �
� ������

This has the advantage that upper limits are invariant with respect to a transformation of
the parameter by raising to an arbitrary power� This is equivalent to a uniform �improper�
prior of the form ������ for log �� It is unusable� however� for the case discussed here� since
the integrals in ����� diverge� Therefore� despite its conceptual di�culties� the uniform
prior density is the most commonly used choice for setting limits on parameters�

Figure ��
 shows the upper limits at ��� con�dence level derived according to the
classical� shifted� and Bayesian techniques as a function of %�exp � x � y for ��
 � �� For
the Bayesian limit� a prior density ���� � constant was used� The shifted and classical
techniques are equal for %�exp � �� The Bayesian limit is always positive� and always

greater than or equal to the classical limit� As %�exp becomes larger than the experimental
resolution ��
� the Bayesian and classical limits rapidly approach each other�

���� Upper Limit on the Mean of Poisson Variable

with Background

As a �nal example recall Section ��� where an upper limit was placed on the mean  of a
Poisson variable k� Often one is faced with a somewhat more complicated situation where
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Figure ��
� Upper limits at � 

con�dence level for the example of

Section ��� using the classical� shifted and

Bayesian techniques� The shifted and

classical techniques are equal for ��exp � ��

the observed value of k is the sum of the desired signal events ks as well as background
events kb�

k � ks � kb � ������

where both ks and kb can be regarded as Poisson variables with means s and b�
respectively� Suppose for the moment that the mean for the background b is known
without any uncertainty� For s one only knows a priori that s � �� The goal is to
construct an upper limit for the signal parameter s given a measured value of k�

Since k is the sum of two Poisson variables� one can show that it is itself a Poisson
variable� with the probability function�

f�k�s� b� �
�s � b�k

k"
e���s��b� � ������

The maximum likelihood estimator for s is

%s � k � b � ������

which clearly has zero bias since E�k	 � s � b� Equations ������ used to determine the
con�dence interval become

� � P �%s � %exps �los � �
X

k�kexp

�los � b�k e���
lo
s ��b�

k"
�

� � P �%s � %exps �ups � �
X

k�kexp

�ups � b�k e���
up
s ��b�

k"
� ����
�
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which can be solved numerically for the lower and upper limits los and ups � Comparing
with the case b � �� one sees that the limits from ����
� are related to what would be
obtained without background simply by

los � los �no background� � b �

ups � ups �no background�� b � ������

The di�culties here are similar to those encountered in the previous example� The
problem occurs when the total number of events observed kexp is not large compared to
the expected number of background events b� Values of ups for � � � � ���� are shown
in Fig� ����a� as a function of the expected number of background events b� For small
enough kexp and a high enough background level b� a non�negative solution for ups does
not exist� This situation can occur� of course� because of �uctuations in ks and kb�

Figure ���� Upper limits �ups at a con�dence level of 
 � 
 	 ��� for di�erent numbers of events

observed kexp and as a function of the expected number of background events �b� �a� The classical limit�

�b� The Bayesian limit based on a uniform prior density for �s�

Because of these di�culties� the classical limit is not recommended in this case� As
previously mentioned� one should always report %s and an estimate of its variance even
if it comes out negative� In this way the average of many experiments will converge to
the correct value� If� in addition� one wishes to report an upper limit on s� the Bayesian
method can be used with e�g� a uniform prior density �Hel
�	� The likelihood function is
given by the probability ������� now regarded as a function of s�

L�s� �
�s � b�k

k"
e���s��b� � ������

The posterior probability density for s is obtained as usual from Bayes� theorem�
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p�s� �
L�s���s� dsR�

� L��s����s� d�s
� ������

Taking ��s� to be constant for s � � and zero for s 
 �� the upper limit ups is given
by

�� � �

R �ups
� L�s���s� dsR�
� L��s����s� d�s

�

R �ups
� �s � b�kexp e

���s��b� dsR�
� �s � b�kexp e���s��b� ds

� �����

The integrals can be related to incomplete gamma functions �see e�g� �Arf��	� allowing
equation ����� to be expressed as

� �
e���s��b�

Pkexp
k��

��ups ��b�
k

k�

e��b
Pkexp

k��
�kb
k�

� ������

This can be solved numerically for the upper limit ups � The upper limit as a function of
b is shown in Fig� ����b� for various values of kexp� For the case without background�
setting b � � gives

� � e��
up
s

kexpX
k��

�ups �k

k"
� ������

which is identical to the equation for the classical upper limit ������� This can be seen
by comparing Figs� ����a� and �b�� The Bayesian limit is always greater than or equal to
the corresponding classical one� with the two agreeing only for b � ��

The agreement for the case without background must be considered accidental�
however� since the Bayesian limit depends on the particular choice of a constant prior
density ��s�� Nevertheless� the coincidence spares one the trouble of having to defend
either the classical or Bayesian viewpoint� which may account for the general acceptance
of the uniform prior density in this case�
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Chapter ��

Characteristic Functions and Related

Examples

���� Denition and Properties of the Characteristic

Function

The characteristic function �x�k� for a random variable x with p�d�f� f�x� is de�ned as
the expectation value of eikx�

�x�k� � E�eikx	 �
Z �

��
eikxf�x�dx � ������

This is essentially the Fourier transform of the probability density function� It is
useful in proving a number of important theorems� in particular those involving sums of
random variables� Some characteristic functions of important p�d�f��s are given in Table
����� Further examples can be found in �Ead��	 Chapter ��

Suppose one has n independent random variables x�� � � � � xn� with p�d�f��s
f��x��� � � � � fn�xn�� and corresponding characteristic functions ���k�� � � � � �n�k�� and
consider the sum z �

P
i xi� The characteristic function �z�k� for z is related to those of

the xi by

�z�k� �
Z
	 	 	

Z
exp



ik

nX
i��

xi

�
f��x�� 	 	 	 fn�xn�dx� 	 	 	 dxn �����

�
Z
eikx�f��x��dx� 	 	 	

Z
eikxnfn�xn�dxn

� ���k� 	 	 	 �n�k� �

That is� the characteristic function for a sum of random variables is given by the product
of the individual characteristic functions�
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Distribution p�d�f� characteristic function ��k�

Binomial f�n�N� p� � N �
n��N�n�� p

n ��� p�N�n �p�eik � �� � ��N

Poisson f�n�� � �n

n�
e�� exp��eik � ���

Uniform f�x� a� b� �

�
�

b�a a � x � b

� otherwise
eibk�eiak
�b�a�ik

Exponential f�x� �� � �
�
e�x�� �

��ik�

Gaussian f�x��� ��� � �p
�	��

exp
���x����

���

�
exp�i�k � �

��
�k��

Chi�Square f�z�n� � �
�n����n���

zn����e�z�� �� � ik��n��

Cauchy f�x� � �
	

�
��x�

e�jkj

Table ����� Characteristic functions for several commonly used probability functions�

To �nd the p�d�f� f�z� one must compute the inverse Fourier transform�

f�z� �
�

�

Z �

��
�z�k� e

�ikz dk � ������

Even if one is unable to invert the transform to �nd f�z�� one can easily determine its
moments� Di�erentiating the characteristic function m times gives

dm

dkm
�z�k�

�����
k��

�
dm

dkm

Z
eikzf�z�dz

�����
k��

������

� im
Z
zm f�z�dz

� im ��m

where ��m � E�zm	 is the mth algebraic moment of z� One can use this� for example� to
show that the mean and variance of the Gaussian distribution are
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E�x	 � �i d
dk

�exp�i�k � �
��

�k���

�����
k��

� �

V �x	 � E�x�	� �E�x	��

� � d�

dk�
�exp�i�k � �

�
��k���

�����
k��

� �� � �� � ������

The property ����� allows us to prove a number of results that have been used already
in previous chapters� For example� consider the sum z of two Gaussian random variables
x and y with means �x� �y and variances ��

x� �
�
y� According to ����� the characteristic

function for z is related to those of x and y by

�z�k� � �x�k��y�k�

� exp�i�xk � �
�
��
xk

�� 	 exp�i�yk � �
�
��
yk

��

� exp�i��x � �y�k � �
�
���

x � ��
y�� � ������

This shows that z is itself a Gaussian random variable with mean �z � �x � �y and
variance ��

z � ��
x � ��

y� The corresponding property for the di�erence of two Gaussian
variables was used in the example of Section ����

In a similar way one can show that the sum of Poisson variables with means i is itself
a Poisson variable with mean

P
i i� Also using ����� one can show that for n independent

Gaussian random variables xi with means �i and variances ��
i � the sum of squares

z �
nX
i��

�xi � �i��

��
i

������

follows a ���distribution for n degrees of freedom� A proof of the Central Limit Theorem
based on similar arguments is given in �Bra�	 Chapter ��

���� Use of Characteristic Function to Find p�d�f� of

an Estimator

Consider n independent observations of a random variable x from an exponential
distribution f�x� �� � ����� exp��x���� In Section �� it was seen that the maximum
likelihood estimator %� for � was the sample mean of the observed xi�

%� �
�

n

nX
i��

xi � ����
�

��



If the experiment were repeated many times one would obtain values of %� distributed
according to a p�d�f� g�%��n� �� which depends on the number of observations per experiment
n and the true value of the parameter ��

Suppose one wants to �nd g�%��n� ��� The characteristic function for x is

�x�k� �
Z
eikxf�x�dx ������

�
Z �

�
eikx

�

�
e�x��dx

�
�

�� ik�
�

Applying equation ����� for the sum z �
Pn

i�� xi � n%� gives

�z�k� �
�

��� ik��n
� �������

The p�d�f� gz�z� for z is found by computing the inverse Fourier transform of �z�k��

gz�z� �
�

�

Z �

��
e�ikz

�� � k��n
dk � �������

The integrand has a pole of order n at �i�� in the complex k plane� Closing the
contour in the lower half plane and using the residue theorem gives

gz�z� �
�

�n� ��"

zn��

�n
e�z�� � ������

Transforming to �nd p�d�f� for the estimator %� � z�n gives

g�%��n� �� � gz�z�
���dz�d%���� �������

� ngz�n%��

�
nn

�n� ��"

%�n��

�n
e�n

���� �

which is a special case of the gamma distribution �see e�g� �Ead��	 Chapter ��� Figure ����
shows the distribution g�%��n� �� for several values of the parameters� For n � �
measurements one sees that the p�d�f� is roughly centered about the true value �� but
has a long tail extending to higher values of %�� In Fig� �����b� one sees that the p�d�f�
becomes approximately Gaussian as the number of measurements n increases� as required
by the Central Limit Theorem�

��



Figure ����� The sampling p�d�f� g����n� �� for the estimator �� for various values of n and �� �a�

n 	  measurements and various values of the true parameter �� �b� � 	 � and various numbers of

measurements n�

Expectation Value for Mean Lifetime and Decay Constant

Using now the conventional notation for particle lifetimes� equation ������� gives the p�d�f�
of %� � ���n�

Pn
i�� ti used to estimate the mean lifetime � of a particle given n decay�time

measurements t�� � � � tn� Recall that the expectation value of %� was computed in Section
�� by using the formula

E�%��t�� � � � tn�	 �
Z �

�
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�
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n

nX
i��

ti

�
�

�
e�t��� 	 	 	 �

�
e�tn��dt� 	 	 	 dtn � � � �������

This result could have also been obtained directly from the p�d�f� of %� �see equation
���������

E�%� 	 �
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�
%� g�%� �n� � � d%� �������

�
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�
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nn

�n� ��"
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�n
e�n���� d%�
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It was also shown in Section �� that the maximum likelihood estimator for a function of
a parameter is given by the same function of the ML estimator for the original parameter�
For example� the ML estimator for the decay constant  � ��� is % � ��%� � From g�%� �n� � �
one can compute the p�d�f� h�%��
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The expectation value of % is
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One sees that even though the maximum likelihood estimator %� � ���n�
Pn

i�� ti is an
unbiased estimator for � � the estimator % � ��%� is not an unbiased estimator for  � ��� �
The bias� however� goes to zero in the limit that n goes to in�nity�

Con�dence Intervals for Mean of Exponential Random Variable

The p�d�f� g�%��n� �� from equation ������� can be used to determine a con�dence interval
according to the procedure given in Section ��� Suppose n observations of the exponential
random variable x have been used to evaluate the estimator %� for the parameter �� and the
value obtained is %�exp� The goal is to determine an interval �a� b	 given the data x�� � � � xn
such that the probabilities P �a 
 �	 � � and P �� 
 b	 � � hold for �xed � and �
regardless of the true value ��

The con�dence interval is found by solving equations ����� for a and b�

� �
Z �

��exp
g�%�� a� d%� �

� �
Z ��exp

��
g�%�� b� d%� � �����
�

Figure ��� shows the �
��� con�dence intervals for various values of n assuming
a measured value %�exp � �� Also shown are the intervals one would obtain from the
measured value plus or minus the estimated standard deviation� As n becomes larger
the p�d�f� g�%��n� �� becomes Gaussian �as it must by the Central Limit Theorem� and the
�
��� central con�dence interval approaches �%�exp � %����

%�exp � %���	� An example similar to
the one given here can be found in �Bra�	 page ��� where the con�dence intervals are
estimated using the likelihood function�

��



Figure ���� Classical con�dence

intervals for the parameter of the

exponential distribution � �between solid

points� and the interval ���exp � ����� ��exp�
����� �between open triangles� for di�erent

values of the number of measurements n�

assuming an observed value ��exp 	 
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