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Preface

The following book is an introduction to the practical application of statistics in data
analysis as typically encountered in the physical sciences, and in particular in high
energy physics. Students entering this field do not usually go through a formal course
in probability and statistics, despite having been exposed to many other advanced
mathematical techniques. Statistical methods are invariably needed, however, in order to
extract meaningful information from experimental data.

The book originally developed out of work with graduate students in the ALEPH
collaboration at the European Organization for Nuclear Research (CERN). It is primarily
aimed at graduate or advanced undergraduate students in the physical sciences engaged in
research or laboratory courses which involve data analysis. It is desirable that the reader
have access to a computer with mathematical and statistical program libraries (e.g. the
CERN libraries), so as to be able to try out the various techniques. A number of the
methods are widely used in the physical sciences but less widely understood, and it is
therefore hoped that more advanced researchers can also profit from the material.

It is assumed that the reader has an understanding of linear algebra, multivariable
calculus and some knowledge of complex analysis. This is essentially always the case for
students in physics, engineering and other physical sciences, and thus the book should
pose no serious difficulties in terms of assumed prior knowledge. Roughly speaking, the
present book is somewhat less theoretically oriented than that of Eadie et al., [Ead71],
and somewhat more so than those of Lyons [Lyo86] and Barlow [Bar89].

An attempt has been made to present the most important concepts and tools in
a manageably short space. As a consequence, many results are given without proof
and the reader is often referred to the literature for more detailed explanations. It is
thus considerably more compact than several other works on similar topics, e.g. those by
Brandt [Bra92] and Frodeson et al. [Fro79]. Most chapters employ concepts introduced
in previous ones. Since the book is relatively short, however, it is hoped that readers will
look at least briefly at the earlier chapters before skipping to the topic needed.

The bulk of the material here was presented as a half-semester course at the University
of Siegen in 1995. Given the material added since then, most of the book could be covered
in 20 to 30 one-hour lectures. A major problem concerning use as a textbook is the
question of exercises, since to be realistic these require a computer. Although no exercises
are presented here, the reader interested in practicing the techniques is encouraged to
implement the examples on a computer. By modifying the various parameters and the



input data, one can gain experience with the methods presented. This is particularly
instructive in conjunction with the Monte Carlo method (Chapter 3), which allows one
to generate simulated data sets with known properties. These can then be used as input
for the various statistical techniques.

The topics include basic aspects of probability and statistical inference, Monte Carlo
techniques, statistical tests, and methods of parameter estimation. The concept of
probability plays, of course, a fundamental role. In addition to the interpretation of
probability as a relative frequency as used in classical statistics, the Bayesian approach
using subjective probability is discussed as well. Although the frequency interpretation
tends to dominate in most of the commonly applied methods, it was felt that certain
applications can be better handled with Bayesian statistics, and that a brief discussion of
this approach was therefore justified.

The important topic of numerical minimization is not treated, since computer routines
that perform this task are widely available in program libraries. Also omitted are
techniques that are widely used in the biological sciences and economics, such as analysis
of variance and time series analysis, since these are not as often applicable to problems
encountered in the physical sciences.

In the last chapter!, a number of examples are presented which demonstrate various
concepts developed throughout the book. This chapter also includes a discussion of
practical considerations that must be dealt with in a “real” data analysis, such as
systematic and theoretical errors, data reduction, and ease of implementation of a method.

Tn preparation.
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Chapter 1

Fundamental Concepts

1.1 Probability and Random Variables

The aim of this book is to present the most important concepts and methods used in
data analysis. Among these concepts, uncertainty plays a central role, since this is
inevitably present in experimentally obtained information. For example, one is often
faced with a situation where the outcome of a repeated measurement varies unpredictably
upon repetition of the experiment. Such behaviour can stem from errors related to
the measuring device, or it could be the result of a more fundamental (e.g. quantum
mechanical) unpredictability inherent to the system. The uncertainty might stem from
various undetermined factors which in principle could be known but in fact are not. A
characteristic of a system is said to be random when some hypothesis concerning its nature
is not known with complete certainty.

The degree of randomness can be quantified with the concept of probability. The
mathematical theory of probability has a history dating back at least to the 17th century,
and several different definitions of probability have been developed. We will use the
definition in terms of set theory as formulated in 1933 by Kolmogorov [Kol33]. Consider a
set S called the sample space consisting of a certain number of elements, the interpretation
of which is left open for the moment. To each subset A of S one assigns a real number
P(A) called a probability, defined by the following three axioms:

(1) For every subset Ain S, P(A) > 0.

(2) For any two subsets A and B that are disjoint (i.e. mutually exclusive, AN B = ()
the probability assigned to the union of A and B is the sum of the two corresponding
probabilities, P(AU B) = P(A) + P(B).

(3) The probability assigned to the sample space is one, P(S5) = 1.

From these axioms further properties of probability functions can be derived, e.g.



P(A) =1 — P(A) where A is the complement of A

P(AUA) =1
0< P(A)< 1
) = 0 (1.1)

if AC B, then P(A) < P(B)
P(AUB)=P(A)+ P(B)— P(AN B)

For proofs and further properties see e.g. [Bra92, Dud88].

A variable that takes on a specific value for each element of the set S is called a random
variable. The individual elements may each be characterized by several quantities, in
which case the random variable is a multidimensional vector.

Suppose one has a sample space S which contains subsets A and B. Provided P(B) # 0
one defines the conditional probability P(A|B) (read P of A given B) as

P(ANB)

P(AIB) = =5

(1.2)
Figure 1.1 shows the relationship between the sets A, B and S. One can easily show that
conditional probabilities themselves satisfy the axioms of probability, both with S as well
as with the subset B taken as the sample space. Note that the usual probability P(A)
can be regarded as the conditional probability for A given S: P(A) = P(A|YS).

AnNnB

N
A Figure 1.1: Relationship between the

S sets A, B and S in the definition of
conditional probability.

Two subsets A and B are said to be independent if

P(AN B) = P(A) P(B). (1.3)

For A and B independent, it follows from the definition of conditional probability that
P(A|B) = P(A) and P(BJ|A) = P(B). (Do not confuse independent subsets according to
(1.3) with disjoint subsets, i.e. AN B =10.)

From the definition of conditional probability one also has the probability of B given
A (assuming P(A) # 0)

P(BN A)

P(BIA) = =5

(1.4)



Since AN B is the same as B N A, by combining equations (1.2) and (1.4) one has

P(B N A) = P(A|B) P(B) = P(B|A) P(A), (1.5)
b = AL ) 16

Equation (1.6) relating the conditional probabilities P(A|B) and P(B|A) is called Bayes’
theorem [Bay63].

Suppose the sample space S can be broken into disjoint subsets A;, i.e. S = U; A; with

A;NA; =0 for i # j. Assume further that P(A;) # 0 for all . An arbitrary subset B
can be expressed as B = BN S = BN (U;A4;) = U;(BNA;). Since the subsets BN A, are
disjoint, their probabilities add, giving

P(B) = P(U(BNA))=> P(BNA) (1.7)
= ZP(B|A¢)P(A¢) :
The last line comes from the definition (1.4) for the case A = A;. This expression for

the probability is useful if one can break the sample space into subsets A; for which the
probabilities are easy to calculate. It is often used with Bayes’ theorem (1.6) to give

poas) - _PEIA P

= S PBIAPA) (18)

Here A can be any subset of S, including e.g. one of the A;.

As an example, consider a disease which is known to be carried by 0.1% of the
population, i.e. the prior probabilities to have the disease or not are

P(disease) = 0.001 ,
P(no disease) = 0.999 .

A test is developed which yields a positive result with a probability of 98% given that the
person carries the disease, i.e.

P(+|disease) = 0.98 ,
P(—|disease) = 0.02.



Suppose there is also a 3% probability, however, to obtain a positive result for a person
without the disease,

P(+|no disease) = 0.03,
P(—|no disease) = 0.97 .

Suppose your test result is positive. What is the probability that you have the disease?
According to Bayes’ theorem (equation (1.8)) this is given by

P(+|disease) P(disease)
P(+|disease) P(disease) + P(+|no disease) P(no disease)
0.98 x 0.001
0.98 x 0.001 + 0.03 x 0.999
= 0.032.

P(disease|+) =

The probability that you have the disease given a positive test result is only 3.2%.
This may be surprising, since the probability of having a wrong result is only 2% if you
carry the disease and 3% if you do not. But the prior probability is extremely low, 0.1%,
which leads to a posterior probability of only 3.2%. An important point that we have
skipped over up to now is what it really means when we say P(disease|+) = 0.032, i.e.
how exactly the probability should be interpreted. This question is examined in the next
section.

1.2 Interpretation of Probability

Although any function satisfying the axioms above can be called by definition a
probability function, one must still specify how to interpret the set elements and how
to assign and interpret the probability values. There are two main interpretations of
probability commonly used in data analysis. The most important is that of relative
frequency, used among other things for assigning statistical errors to measurements.
Another interpretation called subjective probability is also used, however, e.g. to quantify
systematic uncertainties. These two interpretations are described in more detail below.

Probability as a Relative Frequency
In data analysis, probability is most commonly interpreted as a limiting relative frequency.

Here the elements of the set S correspond to the possible outcomes of a measurement,
assumed to be (at least hypothetically) repeatable. A subset A of S corresponds to the

10



occurrence of any of the outcomes in the subset. Such a subset is called an event, which
is said to occur if the outcome of a measurement is in the subset.

A subset of S consisting of only one element denotes a single elementary outcome.
One assigns for the probability of an elementary outcome A the fraction of times that A
occurs in the limit that the measurement is repeated an infinite number of times:

. number of occurrences of outcome A in n measurements
P(A) = lim

n—0oo n

(1.9)

The probabilities for the occurrence of any out of a set of outcomes (i.e. for a non-
elementary subset A) are determined from those for individual outcomes by the addition
rule given in the axioms of probability. These correspond in turn to relative frequencies
of occurrence.

The relative frequency interpretation is clearly consistent with the axioms of
probability, since the fraction of occurrences is always greater than or equal to zero,
the frequency of any out of a set of independent outcomes is the sum of the individual
frequencies, and the measurement must by definition yield some outcome (i.e. P(S) = 1).
The conditional probability P(A|B) is thus the number of cases where both A and B
occur divided by the number of cases in which B occurs, regardless of whether A occurs.
That is, P(A|B) gives the frequency of A with the subset B taken as the sample space.

Clearly the probabilities based on such a model can never be determined
experimentally with perfect precision. The basic tasks of classical statistics are to estimate
the probabilities (assumed to have some definite but unknown values) given a finite
amount of experimental data, and to test to what extent a particular model or theory
that predicts probabilities is compatible with the observed data.

The relative frequency interpretation is straightforward when studying physical laws,
which are assumed to act the same way in repeated experiments. The validity of
the assigned probability values can be experimentally tested. The concept of relative
frequency is more problematic for unique phenomena such as the Big Bang, or for the
probability that the billionth digit of 7 is a 7. In such cases the repeatability must be
regarded as an idealized property of the model only, not of the system it is supposed to
describe.

Subjective Probability

Another probability interpretation is that of subjective (also called Bayesian) probability.
Here the elements of the sample space' correspond to hypotheses or propositions, i.e.
statements that are either true or false. One interprets the probability associated with a

hypothesis as a measure of degree of belief:

'When using subjective probability the sample space is often called the hypothesis space.

11



P(A) = degree of belief that hypothesis A is true . (1.10)

The sample space S must be constructed such that the elementary hypotheses are
mutually exclusive, i.e. only one of them is true. A subset consisting of more than one
hypothesis is true if any of the hypotheses in the subset is true. That is, the union of sets
corresponds to the Boolean or operation and the intersection corresponds to and. One of
the hypotheses must necessarily be true, i.e. P(S) = 1.

The statement that a measurement will yield a given outcome a certain fraction of the
time can be regarded as a hypothesis, so the framework of subjective probability includes
the relative frequency interpretation. In addition, however, subjective probability can be
associated with, for example, the value of an unknown constant, reflecting one’s confidence
that its value lies in a certain fixed interval. A probability for an unknown constant is not
meaningful with the limiting frequency interpretation, since if one repeats an experiment
depending on a physical parameter whose exact value is not certain (e.g. the mass of the
electron) its value is either never or always in a given fixed interval. The corresponding
probability would be either zero or one, but it is not known which. With subjective
probability, however, a probability of 95% that the electron mass is contained in a given
interval is a reflection of one’s state of knowledge.

The use of subjective probability is closely related to Bayes’ theorem and forms the
basis of Bayesian (as opposed to classical) statistics. Consider again the probability to
have a disease given a positive test result. From the standpoint of someone studying a
large number of potential carriers of the disease, the probabilities in this problem can
be interpreted as relative frequencies. The prior probability P(disease) is the overall
fraction of people who carry the disease, and the posterior probability P(disease|+) gives
the fraction of people with a positive test result who are carriers. A central problem
of classical statistics is to estimate the probabilities that are assumed to describe the
population as a whole by examining a finite sample of data, e.g. a subsample of the
population.

A specific individual, however, may be interested in the subjective probability that he
or she has the disease given a positive test result. If no other information is available,
one would usually take the prior probability P(disease) to be equal to the overall fraction
of carriers, i.e. the same as in the relative frequency interpretation. Here, however, it
is taken to mean the degree of belief that one has the disease before taking the test. If
other information is available, different prior probabilities could be assigned; this aspect of
Bayesian statistics is, as the name implies, subjective. Once P(disease) has been assigned,
however, Bayes’ theorem then tells how the probability to have the disease, i.e. the degree
of belief in this hypothesis, changes in light of a positive test result. The use of subjective
probability is discussed further in Sections 9.8 and 9.9.
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1.3 Probability Density Functions

Consider a repeatable experiment whose outcome is characterized by a single continuous
variable x. The sample space corresponds to the set of possible values that x can assume,
and one can ask for the probability of observing a value within an infinitesimal interval
[z, 2 + dz].? This is given by the probability density function (p.d.f.) f(z):

probability that x observed in the interval [z, x + dx] = f(x)dx . (1.11)

In the relative frequency interpretation, f(x)dx gives the fraction of times that x is
observed in the interval [z, 2 + dz] in the limit that the total number of observations is
infinitely large. The p.d.f. f(x) is normalized such that the total probability (probability
of some outcome) is one,

/Qf(:zj)dx —1, (1.12)

where the region of integration € refers to the entire range of x, i.e. to the entire sample
space.

Although finite data samples will be dealt with more thoroughly in Chapter 5, it
is illustrative here to point out the relationship between a p.d.f. f(z) and a set of n
observations of =, xy,...,x,. A set of such observations can be displayed graphically
as a histogram as shown in Fig. 1.2. The z axis of the histogram is divided into m
subintervals or bins of width Ax;,2 = 1,...,m, where Axz; is usually but not necessarily
the same for each bin. The number of occurrences k; of = in subinterval iz, i.e. the
number of entries in the bin, is given on the vertical axis. The area under the histogram
is equal to the total number of entries n multiplied by Az (or for unequal bin widths,
area = 37 k; - Az;). Thus the histogram can be normalized to unit area by dividing
each k; by the corresponding bin width Az; and by the total number of entries in the
histogram n. The p.d.f. f(z) corresponds to a histogram of @ normalized to unit area in
the limit of zero bin width and an infinitely large total number of entries, as illustrated

in Fig. 1.2(d).

One can consider cases where the variable x only takes on discrete values z;, for

1 =1,..., N, where N can be infinite. The corresponding probabilities can be expressed
as

probability to observe value v; = P(x;) = fi, (1.13)
where ¢ = 1,..., N and the normalization condition is

2 A possible confusion can arise from the notation used here, since # refers both to the random variable
and also to a value that can be assumed by the variable. Many authors use upper case for the random
variable, and lower case for the value, i.e. one speaks of X taking on a value in the interval [z, 2 + dz].
This notation is avoided here for simplicity; the distinction between variables and their values should be
clear from context.

13
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Figure 1.2: Histograms of various numbers of observations of a random variable « based on the same
p.d.f. (a) n = 100 observations and a bin width of Az = 0.5. (b) n = 1000 observations, Az = 0.2.

(c) n = 10000 observations, Az = 0.1. (d) The same histogram as in (c), but normalized to unit area.

Also shown as a smooth curve is the p.d.f. according to which the observations are distributed. For (a-c),

the vertical axis N(x) gives the number of entries in a bin containing «. For (d), the vertical axis is

flo) =22

nAz”
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2 fi=1. (1.14)

Although most of the examples in the following are done with continuous variables, the
transformation to the discrete case is a straightforward correspondence between integrals
and sums.

The cumulative distribution F'(x) is given in terms of the p.d.f. f(x) as

xr

F(z) = / Fla)da' (1.15)
i.e. F'(x) is the probability for the random variable to take on a value less than or equal
to x.% In fact, F'(z) is usually defined as the probability to obtain an outcome less than
or equal to x, and the p.d.f. f(z) is then defined as dF/Jdx. For the “well-behaved”
distributions (i.e. F(z) everywhere differentiable) typically encountered in data analysis
the two approaches are equivalent. Figure 1.3 illustrates the relationship between the
probability density f(x) and the cumulative distribution F'(z).

—~ 0.5

1 T [ r T 1t [ 1 T T ] T ]

0.4

0.3

0.2

L L L L DL B R

o b b b ey

Figure 1.3: (a) A probability density
function f(z). (b) The corresponding

cumulative distribution function F(z).

For a discrete random variable x; with probabilities P(x;) the cumulative distribution
is defined to be the probability to observe values less than or equal to the value x,

3Mathematicians call F'(z) the “distribution” function, while physicists often use the word distribution
to refer to the probability density function. To avoid confusion we will use the terms cumulative
distribution and probability density (or p.d.f.).
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F(z)= Y P(x;). (1.16)

A useful concept related to the cumulative distribution is the so-called quantile of
order o or a-point. The quantile x,, is defined as the value of the random variable x such
that F(x,) = o, with 0 < o < 1. That is, the quantile is simply the inverse function of
the cumulative distribution,

o= F(a). (1.17)

A commonly used special case is 1/, called the median of x.

Consider now the case where the result of a measurement is characterized not by one
but by several quantities, which may be regarded as a multidimensional random vector.
If one is studying people, for example, one might measure for each person their height,
weight, age, etc. Suppose a measurement is characterized by two continuous random
variables & and y. The joint p.d.f. f(x,y) is defined by

probability of x in [z, 2 + dx] and yin [y, y + dy] = f(x,y)dxdy . (1.18)

Since x and y must take on some values, one has

//Qf(x,y)dxdy =1. (1.19)

Speaking again in terms of sets as in Section 1.1, let the event A be “x observed in
p g ag :

[x,2 + dx]” and let B be “y in [y,y + dy]”. One then has f(z,y)dedy = P(AN B). In
the relative frequency interpretation of probability, f(x,y) corresponds to the density of
points on a scatter plot of © and y in the limit of infinitely many points, as shown in

Fig. 1.4.

= 10 [TTT T T T[T T T[T TT[TT7T]
8 R
6 FRRNR.
- _
4 T . '
dy ] Figure 1.4: A scatter plot of two
2 ak ] random variables  and y based on 1000
- 7 observations. The probability for a point
0 S s to be in the square shown at (x, y) is given

by the joint p.d.f. times the area element,

O 2 4 6 8 10 Foy)dedy.
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Suppose the z axis is broken into intervals of width dz labeled by the index 7. Let
event A; correspond to observing x in the interval 7, and let B refer to observing y in a
given interval [y, y + dy], i.e. P(A; N B) = f(x;,y)dady. Since the events A; are mutually
exclusive, by summing over all intervals ¢ one obtains

P(B)= Y P(A:N B) = f,(y)dy (1.20)

for the probability of observing the probability of y in [y, y + dy] regardless of the value
of 2. The function f,(y) is called the marginal p.d.f. for y and is related to the joint p.d.f.
by

fuly) = /Oo flx,y)de . (1.21)

— 00

This corresponds to the normalized histogram of y obtained by projecting a scatter plot
of x and y onto the y axis. Similarly, one obtains the marginal p.d.f. f.(x) by integrating
f(z,y) over y. The relationship between the marginal and joint p.d.f.’s are illustrated in

Fig. 1.5.

From the definition of conditional probability (1.2), the probability for y to be in
[y, y + dy] (event A) given that x is in [z, 2 + dz] (event B) is,

P(AIB) = P(;‘(;)B) — f(;;(i))‘;zdy . (1.22)

The conditional p.d.f. for y given x, h(y|x), is thus defined as

h(ylz) = flo.y) (1.23)

folz)
This corresponds to the normalized histogram of y obtained from the projection onto the y
axis of a thin band in @ (i.e. with infinitesimal width dx) from an (x, y)-scatter plot. This
is illustrated in Fig. 1.6 for two values of z, leading to two different conditional p.d.f.’s,
h(y|z1) and h(y|x2). Note that h(y|x1) and h(y|xz) in Fig. 1.6(b) are both normalized to
unit area, as required by the definition of a probability density.

Similarly, the conditional p.d.f. for x given y is

_ flzy)
9(zly) = ) (1.24)

Combining equations (1.23) and (1.24) gives the relationship between g(x|y) and h(y|x),

_ hlyle) fo(x)
g(xly) = ) (1.25)
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Figure 1.5: (a) The density of points on the scatter plot is given by the joint p.d.f. f(z,y). (b)
Normalized histogram from projecting the points onto the y axis with the corresponding marginal p.d.f.

fy(y). (¢) Projection onto the ¢ axis giving fy(x).
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Figure 1.6: (a) A scatter plot of random variables z and y indicating two infinitesimal bands in
with width dz at 21 (solid band) and 2 (dashed band). (b) The conditional p.d.f.’s h(y|z1) and h(y|z2)

corresponding to the projections of the bands onto the y axis.

which is Bayes’” theorem for the case of continuous variables (cf. equation (1.6)).

By using f(xz,y) = h(y|z) fo(2) = g(z|y) f,(y), one can express the marginal p.d.f.’s
as

fo@) = [ glaly)fyy)dy (1.26)
fuly) = /Oo h(y|z) fola)dz .

— 00

These correspond to the expansion of P(B) given by equation (1.7), generalized to the
case of continuous random variables.

If “¢ in [@,2 + dz]” (event A) and “y in [y + dy]|” (event B) are independent, i.e.
P(AN B)= P(A) P(B), then the corresponding joint p.d.f. for x and y factorizes:

fz,y) = fo(2) fuly) - (1.27)

From equations (1.23) and (1.24) one sees that for independent random variables 2 and
y the conditional p.d.f. g(x|y) is the same for all y, and similarly ~(y|z) does not depend
on x. In other words, having knowledge of one of the variables does not change the
probabilities for the other. The variables z and y shown in Fig. 1.6, for example, are not
independent, as can be seen from the fact that h(y|x) depends on x.
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1.4 Functions of Random Variables

Functions of random variables are themselves random variables. Suppose a(x) is a
continuous function of a continuous random variable z, where x is distributed according
to the p.d.f. f(x). What is the p.d.f. g(a) that describes the distribution of a? This is
determined by requiring that the probability for x to occur between = and x + dx be equal
to the probability for a to be between a and a 4+ da. That is,

g(d)dd' = / fla)de (1.28)
dQ

where the integral is carried out over the infinitesimal volume element df) defined by the

region in wz-space between a(x) = ' and a(x) = @’ + dd’, as shown in Fig. 1.7(a). If the

function a(x) can be inverted to obtain x(«), equation (1.28) gives

z(a+da)
[ !
z(a)

x(a)—|—|3—i|da

- /x Fla)da' (1.29)

gla)da =
(a) “

or

dx

gla) = fla(a)) |7 - (1.30)

The absolute value of da/da insures that the integral is positive. If the function a(x)
does not have a unique inverse, one must include in d€) contributions from all regions in
z-space between a(x) = ¢’ and a(x) = ¢’ + dd’, as shown in Fig. 1.7(b).
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X X

Figure 1.7: Transformation of variables for (a) a function a(z) with a single valued inverse x(a) and

(b) a function for which the interval da corresponds to two intervals dz; and dus.
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The p.d.f. g(a) of a function a(xy,...,x,) of n random variables x4, ..., x, with the
joint p.d.f. f(xy,...,2,) is determined by

g(a")da' = //dQ flar, .o an)dey -+ day, (1.31)

where the infinitesimal volume element df2 is the region in zq,...,z,-space between the
two (hyper)surfaces defined by a(xq,...,2,) = ¢ and a(xy,...,x,) =d + dd'.

> 5
-
3¢
2 L Figure 1.8: The region of integration
F dQ2 contained between the two curves
] L zy = z and zy = z + dz. Occurrence
C of (x,y) values between the two curves
i ] results in occurrence of z values in the
0 O“Hw‘““éwwgwwg‘“‘5 corresponding interval [z, z + dz].

As an example of this technique, consider two independent random variables, x and
y, distributed according to g(x) and h(y), and suppose we would like to find the p.d.f. of
their product z = xy. Since x and y are assumed to be independent, their joint p.d.f. is
given by g(x)h(y). Equation (1.31) then gives for the p.d.f. of z, f(z),

o0

(z+dz)/x

g(z)dz /Z/x h(y)dy , (1.32)

fedz = [ [ glapbty)dedy = [

— 00

where df) is given by the region between zy = z and ry = z 4+ dz, as shown in Fig 1.8.

This yields

1) = [ gwmzn ™ (1.33)

— 00

= [ s

— 00

where the second equivalent expression is obtained by reversing the order of integration.
Equation (1.33) is often written f = ¢ @ h, and the function f is called the Mellin
convolution of g and h.
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Similarly, the p.d.f. f(z) of the sum of two random variables z = a + y is found to be

flz) = /Oo g(@)h(z — 2)dz (1.34)

= [ gtz =ph(y)dy .

Equation (1.34) is also often written f = g @ h, and f is called the Fourier convolution
of ¢ and h. In most cases the names Fourier and Mellin are dropped and one must infer
from context what kind of convolution is meant.

Another technique for determining the p.d.f. of a function of random variables is the
following. Given n random variables z,...,x, one can form n linearly independent
functions a;(x1,...,2,), ¢ = 1,...,n. Assuming the functions a4, ...,a, can be inverted
to give x;(ay,...,a,),t =1,...,n, the joint p.d.f. for the a; is given by

g(alv"'7an):f(xlv"'7xn)|‘]|7 (135)

where |.J] is the absolute value of the Jacobian determinant for the transformation,

Oz, Om 9z
daq das " dan
Ozy  Owp Owa
g 25
J=] 7o ol (1.36)
Az
dan
In this procedure one maps n variables zy,...,x, onto n functions, aq,...,a,, for which

the joint p.d.f. is obtained. To determine the marginal p.d.f. for one of the functions (say
g1(ay)) the joint p.d.f. g(ay,...,a,) must be integrated over the remaining «a;.

In many cases the techniques given above are too difficult to solve analytically. For
example, if one is interested in a single function of n random variables, where n is some
large and itself possibly variable number, it is rarely practical to come up with n — 1
additional functions and then integrate the transformed joint p.d.f. over the unwanted
ones. In such cases a numerical solution can usually be found using the Monte Carlo
techniques discussed in Chapter 3. If only the mean and variance of a function are needed,
the so-called “error propagation” procedures described in Section 1.6 can be applied.

For certain cases the p.d.f. of a function of random variables can be found using integral
transform techniques, specifically, Fourier transforms of the p.d.f.’s for sums of random
variables and Mellin transforms for products. The basic idea is to take the Mellin or
Fourier transform of equation (1.33) or (1.34) respectively. The equation f = g @ h is
then converted into the product of the transformed density functions, f = §-h. The
p.d.f. f is obtained by finding the inverse transform of f A complete discussion of these
methods is beyond the scope of this book; see e.g. reference [Spr79]. An example of a sum
of random variables using Fourier transforms is given in Chapter 11.

22



1.5 Expectation Values

The expectation value E[x] of a random variable a distributed according to the p.d.f. f(x)
is defined as

El2] = /Oo ef(e)de = pu . (1.37)

The expectation value of x (also called the population mean or simply the mean of x) is
often denoted by p. Since f(x)dx is the fraction of measurements with x in [z, 2 + dz],
FElx] is the average value (arithemetic mean) of @ one would obtain after infinitely many
measurements. Note that £[z] is not a function of x, but depends rather on the form of
the p.d.f. f(x). For a function a(z), the expectation value is

Ela] = /_O:o ag(a)da = /Oo a(x) f(x)de . (1.38)

— 00

The second integral is equivalent as can be seen by multiplying both sides of equation
(1.28) by @ and extending the region of integration to cover the entire space. The
expectation value Ela(x)] is not a function of x, but depends on the functional form

of a(x) and the p.d.f. f(z).

Some more expectation values of interest are:

Bl = [ pe)de = 4, (1.39)
called the nth algebraic moment of x, for which p = g} is a special case, and

o0

Bl = Blaly) = [ (o = p)" fe)de = i (1.40)

— 00

called the nth central moment of x. In particular, the second central moment,

o0

Elle = Blal)?) = [ (x = w)*f(e)da = o* = V]a] (1.41)

— 00

is called the population variance (or simply the variance) of x, written o2 or V[z]. Note
that E[(z — E[z])*] = FE[z? — p?. The variance is a measure of how widely z is spread
about its mean value. The square root of the variance o is called the standard deviation
of x, which is often useful because it has the same dimension as x.

For the case of a function of more than one random variable, e.g. a(x1,...,x,) the
expectation value is

Ela(ey,. .. )] = /°° ag(a)da (1.42)
/

— / a(xy, ..., x0)f(x1, .., xn)dey - dey, = pg
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where g(a) is the p.d.f. for @ and f(x1,...,2,) is the joint p.d.f. for ay,...,2,. In the
following the notation u, = Fla] will often be used. As in the single variable case the two
integrals in (1.42) are equivalent, as can be seen by multiplying both sides of equation
(1.31) by a and extending the regions of integration to cover the entire space. The variance
of ais

Via] = El(a — p14)*] = /_O:o . --/_O;(a(xl, oy ®) = )2 f(2r, ) dey - dy, = 02
(1.43)

and is denoted by o2 or V[a]. The covariance of two random variables x and y is defined
as

Vey = E[(l' - Mx)(y - My)] = E[:L‘y] — Mz ly (1'44)
Z(Kmxmxyf@wﬁhdy—uww,

where i, = E[z] and p, = Fly]. More generally, for two functions of n random variables

a(xy,...,x,) and b(xy,...,x,) the covariance V,; is given by
Ve = El(a— pa)(b— )] (1.45)
= Elab] — prapy

= /OO /OO abg(a,b)dadb — pgp

= /_ /_ a(ay, ... x,)b(ar, .. xy) fleg, .o an)dey - dey, — papis

where g(a,b) is the joint p.d.f. for @ and b and f(x1,...,2,) is the joint p.d.f. for the ;.
As in equation (1.42), the two integral expressions for V,; are equivalent. Note that by
construction the covariance matrix V,; (sometimes called the error matrix) is symmetric
in @ and b and that the diagonal elements V,, = o2 (i.e. the variances) are positive. V;

is sometimes denoted by covla, b].

In order to give a dimensionless measure of the level of correlation between two random
variables @ and y, one often uses the correlation coefficient, defined by

Vay

Ox0y

It can be shown (see e.g. [Fro79], [Bra92]) that the correlation coefficient lies in the range

One can roughly understand the covariance of two random variables x and y in the
following way. V., is the expectation value of (# — u.)(y — py), the product of the
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deviations of # and y from their means, p, and p,. Suppose that whenever z is observed
to be greater than p, one has an enhanced probability for y also to be greater than pu,,
and x less than p, gives an enhanced probability to have y less than p,. Then V,, is
clearly greater than zero, and the variables are said to be positively correlated. Such a
situation is illustrated in Fig. 1.9 (a), (c¢) and (d), for which the correlation coefficients
pry are 0.75,0.95 and 0.25 respectively. Similarly, V,,, < 0 is called a negative correlation:
having @ > p, increases the probability to observe y < p,. An example is shown in

Fig. 1.9(b), for which p,, = —0.75.
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Figure 1.9: Scatter plots of random variables = and y with (a) a positive correlation, p = 0.75, (b) a
negative correlation, p = —0.75, (¢) p = 0.95, and (d) p = 0.25. For all four cases the standard deviations

of z and y are 0, = 0y = 1.

From equations (1.27), (1.37) and (1.42) one sees that for independent random
variables @ and y one has

Elzy] = Elz]E[y] = popy (1.47)

(and hence by equation (1.44) V., = 0) although the converse is not necessarily true.
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Figure 1.10, for example, shows a two-dimensional scatter plot of a p.d.f. for which V,,, =0,
but where @ and y are not independent. That is, f(x,y) does not factorize according to
equation (1.27), and hence knowledge of one of the variables affects the conditional p.d.f.
of the other. The covariance V,, vanishes, however, because f(x,y) is symmetric in
about the mean p,.

1.6 Error Propagation

Suppose one has a set of n random variables ¥ = (x1,...,x,) distributed according to
some joint p.d.f. f(Z). Suppose that the p.d.f. is not completely known, but the mean
values of the x;, fi = (p1,...,n) and the covariance matrix, V;; are known or have at
least been estimated. (Methods for doing this are described in Chapters 6 — 8.)

Now consider a function of the n random variables a(Z). To determine the p.d.f.
for @, one must in principle follow a procedure such as those described in Section 1.4
(e.g. equations (1.31) or (1.35)). We have assumed, however, that f(¥) is not completely
known, only the means /i and the covariance matrix V;;, so this is not possible. One can,
however, approximate the expectation value of @ and the variance V[a] by first expanding
the function a(%) to first order about the mean values of the z; (assumed known):

(@) = al)+ 3 | 5] (v — ) (1.45)

The expectation value of a is to first order

Ela(®)] ~ a(f) (1.49)

since E[x; — p;] = 0. The expectation value of a? is
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(B 0] ) (S L] o)
- +§::1 [g;‘i aa_z] » Vi (1.50)

so that the variance V]a] = E[a?] — (F[a])? is given by

S " | da da
iU e

1,5=1

Similarly, one obtains for the covariance of two functions a(¥) and b(¥)

" [ da 0Ob

Vi & 'Z_:l [8:1;2' 8—:1;]] 4_*\/2']4 . (1.52)
1= Z=f

Equations (1.51) and (1.52) form the basis of error propagation (i.e. the variances, which

are used as measures of statistical errors, are propagated from the x; to the functions «,

b, etc.). For the case where the z; are not correlated, that is, V;; = o and V;; = 0 for

i # 7, equations (1.51) and (1.52) become

. " [ da]?
Via(Z)] = o2 ~ Z [ax] o} (1.53)
=1 1l BA=0
and
" | da Ob
Viy ) lax» ax»] ol . (1.54)
=1 g le=pn

Equation (1.51) leads to the following special cases. If @ = @ + y, the variance of « is
then

o? 0'3, + 05 +2V,, . (1.55)

a =

For the product ¢ = xy one obtains

—:—“’+&+2—. (1.56)



If the variables x and y are not correlated (V, = 0), the relations above state that errors
(i.e. standard deviations) add quadratically for the sum a« = x 4 y, and that the relative
errors add quadratically for the product a = zy.

In deriving the error propagation formulas we have assumed that the means and
covariances of the original set of variables a1, ..., x, are known (or at least estimated) and
that the desired functions of these variables can be approximated by the first order Taylor
expansion around the means 1, ..., u,. The latter assumption is of course only exact for
a linear function. The approximation breaks down if the function a(Z) (or functions a,
b) are significantly non-linear in a region around the means /i of a size comparable to the
standard deviations of the x;, o1, ..., 0,. Care must be taken, for example, with functions
like a(x) = 1/a when E[x] = p is comparable to or smaller than the standard deviation
of z. Such situations can be better treated with the Monte Carlo techniques described in
Chapter 3, or using confidence intervals as described in Section 9.2.
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Chapter 2

Examples of Probability Functions

In this chapter a number of commonly used probability distributions and density functions
are presented. Properties such as mean and variance are given, mostly without proof.
Additional p.d.f’s and details on how to compute their means, variances, etc. can be

found in e.g. [Fro79] Chapter 4, [Ead71] Chapter 4, [Bra92] Chapter 5.

2.1 Binomial and Multinomial Distributions

Consider a series of N independent trials or observations for which there are two possible
outcomes, here called “success” and “failure”, where the probability for success is some
constant value, p. For example, one could define success if a measured quantity lands in
a particular bin of a histogram, failure if not, with N total entries in the histogram. The
set of trials can be regarded as a single measurement and is characterized by a discrete
random variable k, defined to be the total number of successes. Note that here the entire
set of observations is treated as a single random measurement, not each individual trial.
That is, the sample space is defined to be the set of possible values of k£ successes given N
observations. If one were to repeat the entire experiment many times with N trials each
time, the resulting values of k& would occur with relative frequencies given by the so-called
binomial distribution.

The form of the binomial distribution can be derived in the following way: We have
assumed that the probability of success in a single observation is p and the probability of
failure is 1 — p. Since the individual trials are assumed to be independent, the probability
for a series of successes and failures in a particular order is equal to the product of the
individual probabilities. For example, the probability in five trials to have success, success,
failure, success, failure in that order is p-p- (1 —p)-p- (1 —p) = p*(1 — p)*. In general
the probability for a particular sequence of k successes and N — k failures is p*(1 —p)NV=*.
We are not interested in the order, however, just in the final number of successes k. The
number of sequences having k successes in N events is
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N!

EY(N — k)’ (2.1)
so the total probability to have £ successes in N events is
N!
f(k; Nyp) = ’ Nk (2.2)

for k = 0,...,N. Note that f(k; N,p) is itself a probability, not a probability density.
The notation used is that the random variable (or variables) are listed as arguments of
the probability function (or p.d.f.) to the left of the semicolon, and any parameters (in
this case N and p) are listed to the right. Moments of k can be computed by using the
binomial theorem, which states for arbitrary quantities p and g,

g: L}?k F=p+oV. (2.3)
= ENN — E)!

In order to compute the nth algebraic moment E[k"] one set ¢ = 1 — p, temporarily regard
p and ¢ as independent, and then set ¢ again equal to 1 — p. This gives

N

N!
Bk _ kn 1 — N-—k
(k"] Z ik “(1-p)
I\" &L N b N_k
= P 1 aP 4
( ap) ];J ENN — E)! 1
a n
= (pa—) (p+q)" (2.4)
p g=1-p
Using this one can compute the expectation value of &,
B[k = Np., (2.5)
and variance,
VIk] = E[F] - (E[k])* (2.6)

= Np(l-p).

Recall that expectation values are not functions of the random variable, but they
depend on the parameters of the probability function, in this case p and N. The binomial
probability distribution is shown in Fig. 2.1 and Fig. 2.2 for various values of p and N.
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Figure 2.1: The binomial distribution Figure 2.2: The binomial distribution

for p = 0.5 and various values of N. for N = 20 and various values of p.

The multinomial distribution is the generalization of the binomial distribution to the
case where there are not just two outcomes (“success” and “failure”) but rather m different
possible outcomes. For a particular trial the probability of outcome ¢ is p;, and since one
of the outcomes must be realized, one has the normalization condition 77 p; = 1.

Now consider a measurement consisting of N trials, each of which yields one of the
possible m outcomes. The probability for a particular sequence of outcomes, e.g. ¢ on
the first trial, 7 on the second, and so on, in a particular order, is the product of the NV
corresponding probabilities, p;p; - - - px. The number of such sequences that will lead to
k1 outcomes of type 1, ky outcomes of type two, etc., is

N!

fey V! iy (21)

If we are not interested in the order of the outcomes, just the total numbers of each type,
then the joint probability for k; outcomes of type 1, ky of type 2, etc. is given by the
multinomial distribution,

N!
f(kl,...,km;N,pl,...,pm) = mp’flp? pfnm . (28)

Suppose one breaks the m possible outcomes into two categories: outcome i (“success”)

and not outcome ¢ (“failure”). Since this is the same as the binomial process presented
above, the number of occurrences of outcome i, k;, must be binomially distributed. This
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is of course true for all i. From equations (2.5) and (2.6) one has that the expectation
value of k; is E[k;] = Np; and the variance is V[k;] = Np;(1 — p;).
Consider now the three possible outcomes: i, j and everything else. The probability

to have k; outcomes of type ¢, k; of type y and N — k; — k; of everything else is

N! ok .
kik:: N.op;.p;) = ki pf (1 — c— N—ki—k; 2.9
f( AN 7p7p]) kz’k]’(N—kZ—k])’pZ p] ( p p]) 9 ( )

so that the covariance V;; = covl[k;, k;] is

~ & VAN — ks — g 7 P j

for i # j, otherwise V;; = 02 = N p; (1 — p;).

An example of the multinomial distribution is the probability to obtain a particular
result for a histogram constructed from N independent observations of a random variable,
i.e. ky entries in bin 1, ky entries in bin 2, etc., with m bins and N total entries. Note
from equation (2.10) that the number of entries in any two bins are negatively correlated.
That is, if in N trials bin ¢ contains a larger than average number of entries (k; > Np;)
then the probability is increased that a different bin 5 will contain a smaller than average
number.

2.2 Poisson Distribution

Consider the binomial distribution of Section 2.1 in the limit that N becomes very large,
p becomes very small, but the product Np (i.e. the expectation value of the number of
successes) remains some finite value A. It can be shown that equation (2.2) leads in this

limit to (see e.g. [Fro79, Bra92))

Ak -

FlkN) = e

(2.11)

which is called the Poisson distribution for the integer random variable k, where k& =
0,1,...,00. The p.d.f. has one parameter, A\. Figure 2.3 shows the Poisson distribution
for A =2,5,10.

The expectation value of the Poisson random variable & is

E[k] = Zkae =), (2.12)
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and the variance is given by

V[k] = fj(k — A)QA—ke—A =\ (2.13)

k=0

An example of a Poisson distributed variable is the number of entries £ in a bin of a
histogram in the limit that the total number of entries, N is very large (and k < N), and
providing that the individual entries are all independent. This is a useful approximation,
since it allows one to estimate the variance of the number of entries in a bin directly from
the number of entries. Another example of a Poisson random variable is the number of
decays of a certain amount of radioactive material in a fixed time period, in the limit that
the total number of possible decays (i.e. the total number of radioactive atoms) is very
large and the probability for an individual decay within the time period is very small.

2.3 Uniform Distribution

The uniform p.d.f. for the continuous variable @ (—oco < x < o00) is defined by

1 a<z<bh

flz;a,b) = { 8_“ (2.14)

otherwise,

i.e. x is equally likely to be found anywhere between @ and b. The mean and variance of
x are given by



E[x]:Abbfadng(a+b), (2.15)

Vi[e] = /ab(x— Ha+ b)) L de— 1(b—a). (2.16)

—a

The uniform distribution will be used frequently in Chapter 3 in connection with Monte
Carlo techniques.

2.4 Exponential Distribution

The exponential probability density of the continuous variable x (with 0 < & < o0) is
defined by

f(z;6) = %e‘”é : (2.17)

The p.d.f. is characterized by a single parameter £. The expectation value of x is

Elz] = é/ooo we™Cdr = ¢ (2.18)

and the variance of z is given by

V[z] = %/Ooo(x ey = €2 (2.19)

An example of an exponential random variable is the decay time of an unstable particle
measured in its rest frame. The parameter ¢ then corresponds to the mean lifetime,
usually denoted by 7. The exponential distribution is shown in Fig. 2.4 for different
values of €.

2.5 Gaussian Distribution

The Gaussian (or normal) p.d.f. of the continuous random variable  (with —co < = < 00)

is defined by

fla;p,0?) = 21 = exp (_(x — M)z) : (2.20)

T 20’2

which has two parameters, u and . The names of the parameters are clearly motivated
by the values of the mean and variance of . These are found to be
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Elz] = /Oo e exp (M) de =, (2.21)

Viz] = _O;(:z; — M)z\/;?exp (_(:EQ;M)Q) dv = o . (2.22)

Recall that p and o? are often used to denote the mean and variance of any p.d.f. as
defined by equations (1.37) and (1.41), not only those of a Gaussian. Note also that one
may equivalently regard either o or o2 as the parameter. The Gaussian p.d.f. is shown in
Fig. 2.5 for different combinations of the parameters pu and o.

A special case of the Gaussian p.d.f. is sufficiently important to merit its own notation.
Using i = 0 and o = 1 one defines the standard Gaussian p.d.f. o(z) as

flo) = = espl(—a?2). (2.23)

with the corresponding cumulative distribution ®(z),

O(r) = / o(a)dz' . (2.24)

One can easily show that if y is distributed according to a Gaussian p.d.f. with mean g
and variance o2, then the variable

(2.25)
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is distributed according to the standard Gaussian (), and the cumulative distributions
are related by F(y) = ®(x). The cumulative distribution ®(x) cannot be expressed
analytically and must be evaluated numerically. Values of ®(x) as well as the quantiles
r, = ®7!(a) are tabulated in many reference books (e.g. [Bra92, Fro79, Dud88]) and are
also available by means of computer routines [CER96].

The importance of the Gaussian distribution stems from the Central Limit Theorem.
The theorem states that the sum of n independent continuous random variables x; with
means y; and variances o? becomes a Gaussian random variable with mean p = 37, 1
and variance 0% = 3°7_ o in the limit that n approaches infinity. This holds (under fairly
general conditions) regardless of the form of the individual p.d.f.’s of the ;. This is the
formal justification for treating measurement errors as Gaussian random variables, and
holds to the extent that the total error is the sum of a large number of small contributions.
The theorem can be proven using the Fourier transform techniques mentioned in Section
1.4; see e.g. [Bra92] Section 5.9.

The N-dimensional generalization of the Gaussian distribution is defined according to
the following formula:

1 1

> nTyr—1/> -
WGXP —5(1’—#) VEE — )| (2.26)

@, V) =
where 7 and [i are column vectors containing zi,...,xx and uy,...,un, ¢ and g’ are
the corresponding row vectors, and V' is a symmetric N x N matrix, thus containing
N(N + 1)/2 free parameters. For now regard V as a label for the parameters of the
Gaussian, although as with the one-dimensional case, the notation is motivated by what
one obtains for the covariance matrix. The expectation values and (co)variances can be
computed to be
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Elx] = (2.27)

Vizgi] = Vi
covlz;,x;] = Vi .
For two dimensions the p.d.f. becomes
1

| _ ‘ 2.28
f($17$2,ﬂl7,u270-170-27p) 27.[.0.10-2\/@ ( )

oo (52 - (58 - (5 (5]}

where p = cov[xy, x3]/(0102) is the correlation coefficient.

2.6 Chi-Square Distribution

The x? (chi-square) distribution of the continuous variable z (0 < z < o) is defined by

1

. — e P B 2.29
2n/2r(n/2)2 € y T » ) ( )

flzin) =
where the parameter n is called the number of degrees of freedom. The gamma function

['(z) is described e.g. in references [Arf70, Bra92].! The mean and variance of z are found
to be

o0 1
— & omnf2-1_—z/2 —
E[Z] /0 z 2”/2F(n/2)2 e n, (2.30)
0 1
nf2lem 2 = 9 2.31
/ zn/zr(n/z)Z ‘ " (231)

The y%-distribution is shown in Fig. 2.6 for several values of the parameter n.

The y2-distribution derives its importance from the following. Given N independent
Gaussian random variables z; with known mean j; and variance o7, it can be shown that
the random variable

_ g: (@i ;2/%')2 (2.32)

=1

'For the purposes of computing the x?-distribution, one only needs to know that I'(n) = n! for integer

n, (z + 1) = «l(z), and T(1/2) = /7.
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is distributed according to the y*distribution for N degrees of freedom. (See e.g.
[Fro79, Bra92].) More generally, if the x; are not independent but are described by
an N-dimensional Gaussian p.d.f. (equation (2.26)), the variable

2= (T @) VT~ ) (2.33)

is a y? random variable for IV degrees of freedom. This and other similar examples will
be discussed further in Chapter 7.

2.7 Cauchy (Breit-Wigner) Distribution

The Cauchy or Breit-Wigner p.d.f. of the continuous variable @ (—oo < x < o0) is defined
by

11

f(x)zgl—l—x?'

(2.34)
This is a special case of the Breit-Wigner distribution encountered in particle physics,

1 r/2

f(x,F,:z;o) = ;F2/4—|—($—$0)27

(2.35)

where the parameters xg and I' correspond to the mass and width of a resonance particle.
This is shown in Fig. 2.7 for several values of the parameters.

The expectation value of the Cauchy distribution is not well defined, since although the
p.d.f. is symmetric about zero (or x for (2.35)) the integrals [« f(z)dx and [5° x f(x)dx
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are individually divergent. The variance and higher moments are also divergent. The
parameters xg and I' can nevertheless be used to give information about the position and
width of the p.d.f., as can be seen from the figure; ¢ is the peak position (i.e. the most

probable value, also called the mode) and I' is the full-width of the peak at half of the
maximum height.?

2.8 Landau Distribution

In nuclear and particle physics one often encounters the probability density f(A; 3) for the
energy loss A of a charged particle when traversing a layer of matter of a given thickness.
This was first derived by Landau [Lan44], and is given by

f(Ai9) = 260, 0= A<, (2.36)

where € is a parameter related to the properties of the material and the velocity of the
particle 3 = v/e¢, (measured in units of the velocity of light ¢) and ¢(A) is the p.d.f. of
the dimensionless random variable A. The variable X is related to the properties of the
material, the velocity 3, and the energy loss A. These quantities are given by

_ 2mNuetp X 7 d
 metY A B2

¢ (2.37)

?The definition used here is standard in high energy physics where I' is interpreted as the decay rate
of a particle. In some references, e.g. [Ead71, Fro79], the parameter I' is defined as the half~-width at half
maximum, i.e. the p.d.f. is given by equation (2.35) with the replacement ' — 2T.
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where N4 is Avagadro’s number, m, and e are the mass and charge of the electron, z
is the charge of the incident particle in units of the electron’s charge, >~ 7 and }_ A are
the sums of the atomic numbers and atomic weights of the molecular substance, p is its
density, d is the thickness of the layer, I = IoZ with Iy ~ 13.5 eV is an ionization energy
characteristic of the material, v = 1/v/1 — 32, and vg = 0.5772... is Fuler’s constant.
The function ¢(A) is given by

s(0) = —— /:“OO exp(ulnu + Au)du | (2.40)

27 —100

where o is infinitesimal and positive, or equivalently after a variable transformation by

d(A) = %/OOO exp[—u(lnu + A)] sinmu du . (2.41)
The integral must be evaluated numerically (see e.g. [Mac69], [CER96] routine G110).
The energy loss distribution is shown in Fig. 2.8(a) for several values of the velocity
B = v/e. Because of the long “Landau tail”, the mean and higher moments of the Landau
distribution do not exist, i.e. the integral [;° A" f(A)dA diverges for n > 1. As can be
seen from the figure, however, the most probable value (mode) A,,, is sensitive to the
particle’s velocity. This has been computed numerically in [Mac69] to be

Ay = [In(E/¢') +0.198] | (2.42)

and is shown in Fig. 2.8(b).?

Although the mean and higher moments do not exist for the Breit-Wigner and Landau
distributions, the probability densities actually describing physical processes must have
finite moments. If, for example, one were to measure the energy loss A of a particle in a
particular system many times, the average would eventually converge to some value, since
A cannot exceed the energy of the incoming particle. Similarly, the mass of a resonance
particle cannot be less than the sum of the rest masses of its decay products, and it
cannot be more than the center-of-mass energy of the reaction in which it was created.
The problem arises because the Cauchy and Landau distributions are only approximate
models of the physical system. The models break down in the tails of the distributions,
which is the part of the p.d.f. that causes the mean and higher moments to diverge.

3Equation (2.42) (the “Bethe-Bloch formula”) forms the basis for identification of charged particles
by measurement of ionization energy loss. An important effect not included here is the polarization of
the medium, which leads to a saturation of the energy loss at high velocities (the density effect). See e.g.

[A1180].
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Figure 2.8: (a) The Landau probability
density for the energy loss A of a charged
particle traversing a 4 mm thick layer of
argon gas for various values of the velocity
3. (b) The peak position (mode) of the
distributions in (a) as a function of gy as

given by equation (2.42).
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Chapter 3

The Monte Carlo Method

The Monte Carlo method is a numerical technique for calculating probabilities and
related quantities by using sequences of random numbers generated according to known
distributions. For the case of a single random variable, the procedure can be broken into
the following stages. First, a series of random values ry,r, ... is generated according to a
uniform distribution in the interval 0 < r < 1. That is, the p.d.f. g(r) is given by

g(r):{l 0<r<l, (5.1)

(0 otherwise .

Next, the sequence rq, 7, ... is used to determine another sequence 1, x5 ... such that
the x values are distributed according to a p.d.f. f(x) in which one is interested. The
values of x can then be treated as simulated measurements of a quantity =, and from
them the probabilities for = to take on values in a certain region can be estimated. This
may seem like a trivial exercise, since the function f(x) was available to begin with, and
could simply have been integrated over the region of interest. The true usefulness of the
technique, however, becomes apparent in multidimensional problems, where integration
of a joint p.d.f. f(x,y,z,...) over a complicated region of the sample space may not be
feasible by other methods.

3.1 Uniformly Distributed Random Numbers

In order to generate a sequence of uniformly distributed random numbers one could in
principle make use of a random physical process such as the repeated tossing of a coin.
In practice, however, this task is almost always accomplished by a computer algorithm
called a random number generator. Many such algorithms have been implemented as user-
callable subprograms (e.g. the routine RANMAR in [CER96]) and are commonly available
in computer program libraries. A detailed discussion of random number generators is
beyond the scope of this book and the interested reader is referred to the more complete
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treatments in [Bra92, Jam90]. Here a simple but effective algorithm will be presented in
order to illustrate the general idea.

A commonly used type of random number generator is based on the so-called
multiplicative linear congruential algorithm. Starting from an initial integer value ng,
one generates a sequence of integers ny, ny,... according to the rule,

niy1 = an; modm , (3.2)

where the multiplier a and modulus m are integer constants and the mod (modulo)
operator means that one takes the remainder of an; divided by m. The values n; follow a
periodic sequence in the range [1,m — 1]. In order to obtain values uniformly distributed
in [0, 1], one uses the transformation

ri =ni/m, (3.3)

which excludes, however, the end-point values 0 and 1. (More sophisticated algorithms
are able to overcome this minor defect.) The initial value ng (called the seed) and the two
constants @ and m determine the entire sequence, which, of course, is not truly random,
but rather strictly determined. The resulting values are therefore more correctly called
pseudo-random. For essentially all applications these can be treated as equivalent to
true random numbers, with the exception of being reproducible, e.g. if one repeats the
procedure with the same seed.

The values of m and a are chosen such that the generated numbers perform well with
respect to various tests of randomness. Most important among these is a long period
before the sequence repeats, since after this occurs the numbers can clearly no longer be
regarded as random. In addition, one tries to attain the smallest possible correlations
between pairs of generated numbers. For a 32-bit integer representation, for example,
m = 2147483647 and a = 39373 have been shown to give good results, and with these
one attains the maximum period of m — 1 ~ 2 x 10? [Bra92, Lec88].

3.2 The Transformation Method

Given a sequence of random numbers ry, 7y, ... uniformly distributed in [0,1], the next
step is to determine a sequence xy,xs,... distributed according to the p.d.f. f(z) in
which one is interested. In the transformation method this is accomplished by finding
a suitable function x(r) which directly yields the desired sequence when evaluated with
the uniformly generated r values. The problem is clearly related to the transformation of
variables discussed in section 1.4. There, an original p.d.f. f(x) for a random variable x
and a function a(x) were specified, and the p.d.f. g(a) for the function a was then found.
Here the task is to find a function x(r) that is distributed according to a specified f(x),
given that r follows a uniform distribution between 0 and 1.

44



The probability to obtain a value of r in the interval [r,r + dr] is g(r)dr, and this
should be equal to the probability to obtain a value of = in the corresponding interval
[2(r), x(r)+ da(r)], which is f(z)dz. In order to determine x(r) such that this is true, one
can require that the probability that r is less than some value r’ be equal to the probability
that « is less than x(r’). (We will see in the following example that this prescription is
not unique.) Thus one must find a function x(r) such that F(x(r)) = G(r), where F
and G are the cumulative distributions corresponding to the p.d.f.’s f and ¢. Since the
cumulative distribution for the uniform p.d.f. is G(r) = r with 0 < r < 1, one has

= r (3.4)

Equation (3.4) effectively says that the values of a cumulative distribution F'(z), treated
as a random variable, are uniformly distributed between 0 and 1.

Depending on the f(x) in question it may or may not be possible to solve for z(r) using
equation (3.4). Consider the exponential distribution discussed in section 2.4. Equation
(3.4) becomes

z(r) 1 ,
/ —em ey =y (3.5)
o ¢
Integrating and solving for x gives

x(r) = —=Elog(l —r). (3.6)

If the variable r is uniformly distributed between 0 and 1 then ' = 1 — r clearly is too,
so that the function

x(r) = —Clogr (3.7)
also has the desired property. That is, if r follows a uniform distribution between 0 and
1, then x(r) = —&logr will follow an exponential distribution between zero and infinity

with mean €.

3.3 The Acceptance-Rejection Method

It turns out to be too difficult in many practical applications to solve equation (3.4) for
x(r) analytically. A useful alternative is the acceptance-rejection technique developed
by von Neumann. Consider a p.d.f. f(x) which can be completely surrounded by a box
between z,,;, and z,,,, and having height f,..,, as shown in Fig. 3.1. One can generate
a series of numbers distributed according to f(x) with the following algorithm:
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(1) Generate a random number x, uniformly distributed between x,,;, and @4, (i.e.
T = Tmin + "1(Tmaz — Tmin) Where 1y is uniformly distributed between 0 and 1.)

(2) Generate a second independent random number u uniformly distributed between 0

and fraz. (i€ =719 fmas)

(3) If u < f(x), then accept x. If not, reject x and repeat.

— 0.5 :
x i
= A
0.4 ]
0.3 5
0.2 .
] Figure 3.1: Probability density f(z)
0.1 ] enclosed by a box to generate random
] numbers using the acceptance-rejection
0 ] technique.

The accepted x values will be distributed according to f(x), since for each value of x
obtained from step (1) above, the probability to be accepted is proportional to f(x).

As an example consider the p.d.f.!

(1+2%), -1<x<1. (3.8)

ool W

fz) =

The p.d.f. has a maximum value at @ = +1 of f,., = 3/4. Figure 3.2(a) shows a scatter
plot of the random numbers u and x generated according to the algorithm given above.
The x values of the points that lie below the curve are accepted. Figure 3.2(b) shows a
normalized histogram constructed from the accepted points.

The efficiency of the algorithm (i.e. the fraction of x values accepted) is the ratio
of the areas of the p.d.f. (unity) to that of the enclosing box fiaz * (Tmazr — Tmin). For
a highly peaked density function this efficiency may be quite low, and the algorithm
may be too slow to be practical. In cases such as these, one can improve the efficiency
by enclosing the p.d.f. f(x) in any other curve g(x) for which random numbers can be
generated according to g(x)/ [ g(a')dz’, using e.g. the transformation method, equation
(3.4). The more general algorithm is then:

!Equation (3.8) gives the distribution of the scattering angle ¢ in the reaction ete™ — putpu~ with
x = cosf.
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(1) Generate a random number = according to the p.d.f. g(x)/ [ g(a’)dz’.
(2) Generate a second random number u uniformly distributed between 0 and g(x).

(3) If u < f(x), then accept x. If not, reject x and repeat.

Here the probability to generate a value x in step (1) is proportional to g(x), and the
probability to be retained after step (3) is equal to f(x)/g(x), so that the total probability
to obtain « is proportional to f(x) as required.

3.4 Applications of the Monte Carlo Method

The Monte Carlo technique provides a method for determining the p.d.f.’s of functions
of random variables. Suppose, for example, one has n independent random variables
T1,...,x, distributed according to known p.d.f.’s fi(z1),..., fu(z,), and one would like
to compute the p.d.f. g(a) of some (possibly complicated) function a(xy,...,z,). The
techniques described in section 1.4 are often only usable for relatively simple functions
of a small number of variables. With the Monte Carlo method, a value for each z;
is generated according to the corresponding fi(x;). The value of a(xi,...,2,) is then
computed and recorded (e.g. in a histogram). The procedure is repeated until one has
enough values of a to estimate the properties of its p.d.f. g(a) (e.g. mean, variance) with
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the desired statistical precision. FExamples of this technique will be used in Chapters 6

through 8.

The Monte Carlo method is often used to simulate experimental data. In particle
physics, for example, this is typically done in two stages: event generation and detector
simulation. Consider for example an experiment in which an incoming particle such as
an electron scatters off a target and is then detected. Suppose there exists a theory that
predicts the probability for scattering to occur as a function of the scattering angle (i.e.
the differential cross section). First one constructs a Monte Carlo computer program
to generate values of the scattering angles and hence the momentum vectors of the final
state particles. Such a program is called an event generator. In high energy physics, event
generators are available to describe a wide variety of particle reactions.

The output of the event generator, i.e. the momentum vectors of the generated
particles, are then used as input for a detector simulation program. Since the response of
a detector to the passage of the scattered particles also involves random processes such as
the production of ionization, multiple Coulomb scattering, etc., the detector simulation
program is also implemented using the Monte Carlo method. Program packages such
as GEANT [CER96] can be used to describe complicated detector configurations, and
experimental collaborations typically spend considerable effort in achieving as complete
a modelling of the detector as possible. This is especially important in order to optimize
the detector’s design for investigating certain physical processes before investing time and
money in constructing the apparatus.

When the Monte Carlo method is used to simulate experimental data, one can most
easily think of the procedure as a computer implementation of an intrinsically random
process. Probabilities are naturally interpreted as relative frequencies of outcomes of
a repeatable experiment, and the experiment is simply repeated many times on the
computer. The Monte Carlo method can also be regarded, however, as providing a
numerical solution to other problems involving probabilities, and the results are clearly
independent of the probability interpretation. This is the case, for example, when the
Monte Carlo method is used simply to carry out a transformation of variables or to
compute integrals of p.d.f.’s.
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Chapter 4

Statistical Tests

4.1 Hypotheses, Test Statistics, Significance Level,
Power

In this chapter some basic concepts of statistical test theory are presented. Here the
task is to make a statement about how well the observed data stand in agreement with
given predicted probabilities, i.e. a hypothesis. The hypothesis under consideration is
traditionally called the null hypothesis, Hy, which could specify, for example, a probability
density f(x) of a random variable . If the hypothesis determines f(x) uniquely it is said
to be simple; if the form of the p.d.f. is defined but not the values of at least one free
parameter 6, then f(x;6) is called a composite hypothesis. In such cases the unknown
parameter or parameters are estimated from the data using e.g. techniques discussed in
Chapters 5 — 8. For now we will concentrate on simple hypotheses.

A statement about the validity of Hy often involves a comparison with some alternative
hypotheses, Hy, Hy,.... Suppose one has n observations of a random variable =z,
(x1,...,2,), and a set of hypotheses, Hy, Hi, ..., each of which specifies a given p.d.f.
f(z|Hyo), f(x|Hy),...'. In order to investigate the measure of agreement between the
observed data and a given hypothesis, one constructs a function of the measured sample
called a test statistic T'(xy,...,x,). Each of the hypotheses will imply a given p.d.f. for
the statistic T', i.e. g(T'|Ho), g(T|Hy), etc.

The procedure for choosing the test statistic 7" depends in general on the hypotheses
under consideration. In trying to distinguish between two hypotheses Hy and H;, the
goal is clearly to construct T"in such a way that the p.d.f.’s g(T'|Hy) and g(T'|H;) overlap
as little as possible. Procedures for constructing test statistics will be taken up again in
sections 6.10 and 7.5. Let us suppose for the moment that we have chosen such a function

'For the p.d.f. of  given the hypothesis H the notation of conditional probability f(z|H) is used
(section 1.3), even though in the context of classical statistics a hypothesis H is only regarded as a
random variable if it refers to the outcome of a repeatable experiment. In Bayesian statistics both # and
H are random variables, so there the notation is in any event appropriate.
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T(x1,...,2,), which would have the p.d.f. g(T|Hy) if Hy were true, and ¢(T'|H,) if Hy

were true, as shown in Fig. 4.1.

C 2 [ T T T T { T T T T { T T T T { T T T T { T T T T ]
~— r Tcut b
op i : ]
+ accept Hy i reject H, 1
1.5 F .
1 L
i Figure 4.1: Probability densities for the
05 B test statistic 1" under assumption of the
’ r hypotheses Hy and Hi. Hy 1s rejected if
L T 1s observed in the critical region, here
0 L shown as T > T,y:.

Often one formulates the statement about the compatibility between the data and
the various hypotheses in terms of a decision to accept or reject a given null hypothesis
Hy. In practice this is done by defining a eritical region for T'. If the value of T" actually
observed is in the critical region, one rejects the hypothesis Hy; otherwise, Hy is accepted.
The critical region is chosen such that the probability for 7' to be observed there under
assumption of the hypothesis Hy is some value «, called the significance level of the test.
For example, the critical region could consist of values of T' greater than a certain cut-off
T..t, as shown in Fig. 4.1, so that

a—/ (T | Ho)dT (4.1)

One would then decide that the hypothesis Hy is true if the value of T" observed is less
than T.,;. The significance level « is thus the probability of rejecting Hy if Hy is true.
This is called an error of the first kind. An error of the second kind takes place if the
hypothesis Hy is accepted (i.e. T is observed less than T.,;) but the true hypothesis was
not Hgy but rather some alternative hypothesis H;. The probability for this is

B= / 9(T'|Hy)d (4.2)

where 1— (3 is called the power of the test to discriminate against the alternative hypothesis

Hy.
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4.2 An Example with Particle Selection

As an example, the test statistic T' could represent the measured ionization created by a
charged particle of a known momentum traversing a detector. The amount of ionization is
subject to fluctuations from particle to particle, and depends (for a fixed momentum) on
the particle’s mass. Thus the p.d.f. g(T'|Hp) in Fig. 4.1 could correspond to the hypothesis
that the particle is an electron, and the g(T'|H;y) could be what one would obtain if the
particle was a pion, i.e. Hy = ¢, H; = 7.

Suppose the particles in question are all known to be either electrons or pions, and that
one would like to select a sample of electrons. (The electrons are regarded as “signal”,
and pions are considered as “background”.) The probabilities to accept a particle of a
given type, i.e. the efficiencies ¢, and ¢,, are thus

Tcut
¢, = /_Oo g(T)e)dT =1 — o, (4.3)
Tcut
e = /_Oo g(T|m)dT = 3. (4.4)

Individually these can be made arbitrarily close to zero or unity simply by an
appropriate choice of the critical region, (i.e. by making a looser or tighter cut on the
ionization). The price one pays for a high efficiency for the signal is clearly an increased
amount of contamination, i.e. the purity of the electron sample decreases because some
pions are accepted as well.

If the relative fractions of pions and electrons are not known, the problem becomes one
of parameter estimation (Chapters 5 — 8). That is, the test statistic 7' will be distributed
according to f(T;a.) = a.g(Te) + arg(T|n), where a. and a, = 1 — a. are the fractions
of electrons and pions, respectively. An estimate of a. then gives the total number of
electrons NV, in the original sample of Ny, particles, N, = a.Nyo.

Alternatively one may want to select a set of electron candidates by requiring T' < 7.,
leading to N,. accepted out of the N, particles. One is then often interested in
determining the total number of electrons present before the cut on 7" was made. The
number of accepted particles is given by

Nacc — 66N5 —I_ 67'[']\[7T'
= eeNe + 67r(]\/v7,‘o7,‘ - Ne) 5 (45)

which gives

o Nacc - 67r]\/v7,‘o7,‘

€e — Cx
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From (4.6) one clearly sees that the number of accepted particles N,.. can only be used to
determine the number of electrons N, if the efficiencies ¢, and ¢, are different. If there are
uncertainties in €, and €., then these will translate into an uncertainty in NV, according to
the error propagation techniques of section 1.6. One tries to select the critical region (i.e.
the cut value for the ionization) in such a way that the total error in N, is a minimum.

The probabilities that a particle with an observed value of T"is an electron or a pion,
h(e|T) and h(n|T'), are obtained from the p.d.f.’s g(T'|e) and ¢g(7T'|r) using Bayes’ theorem
(1.8),

B acg(Te)
M) = 3510 + an g(TTn) 1)
h(x|T) = ar g(T'|m) (4.8)

B aeg(T|€) + awg(T|7T) ’

where a. and a, = 1 — a. are the prior probabilities for the hypotheses ¢ and 7. Thus
in order to give the probability that a given selected particle is an electron one needs the
prior probabilities for all of the possible hypotheses as well as the p.d.f.’s that they imply
for the statistic T'.

Although this is essentially the Bayesian approach to the problem, equations (4.7) and
(4.8) also make sense in the framework of classical statistics. If one is dealing with a large
sample of particles, then the hypotheses H = ¢ and H = 7 refer to a characteristic that
changes randomly from particle to particle. Using the relative frequency interpretation in
this case, h(e|T') gives the fraction of times a particle with a given T will be an electron.
In Bayesian statistics using subjective probability, one would say that h(e|T') gives the
degree of belief that a given particle with a measured value of T' is an electron.

Instead of the probability that an individual particle is an electron, one may be
interested in the purity p. of a sample of electron candidates selected by requiring T' < T..,;.
This is given by

number of electrons with 1" < T,,;

number of all particles with T' < T,
[Tt qog(Te)dT

[ (acg(Te) + (1 — ad)g(T |x))dT
o€ Ny,

One can check using equation (4.7) that this is simply the mean electron probability
h(e|T), averaged over the interval (—oo,T,]. That is,

_ % h(e]T) F(T) AT
TG

(4.10)
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4.3 Goodness-of-Fit Tests

Frequently one wants to give a measure of how well a given null hypothesis Hy is
compatible with the observed data without specific reference to any alternative hypothesis.
This is called a test of the goodness-of-fit, and can be done by constructing a test statistic
whose value itself reflects the level of agreement between the observed measurements and
the predictions of Hy. Procedures for constructing appropriate test statistics will be given
in sections 6.10 and 7.5. For now we will give a short example to illustrate the main idea.

Suppose one tosses a coin N times and obtains nj heads and n, = N — ny tails. To
what extent are nj; and n; consistent with the hypothesis that the coin is “fair”, i.e. that
the probabilities for heads and tails are equal? As a test statistic one can simply use the
number of heads nj, which for a fair coin is assumed to follow a binomial distribution
(equation (2.2)) with the parameter p = 0.5. That is,

[l N) = #th)’ (%)nh (%)N_nh : (4.11)

Suppose that N = 20 tosses are made and n, = 17 heads are observed. Since the
expectation value of n; (equation (2.5)) is E[ns] = Np = 10, there is evidently a sizable
discrepancy between the expected and actually observed outcomes. In order to quantify
the significance of the difference one can give the probability of obtaining a result with
the same level of discrepancy with the hypothesis or higher. In this case, this is the sum
of the probabilities for n, = 0,1,2,3,17,18,19,20. Using equation (4.11) one obtains the
probability P = 0.0026.

The result of the goodness-of-fit test is thus given by stating the so-called P-value,
i.e. the probability P, under assumption of the hypothesis in question Hy, of obtaining
a result as compatible or less with Hy than the one actually observed. Equivalently one
often gives the confidence level C'L =1 — P. In the classical approach one stops here, and
does not attempt to give a probability for Hy to be true, since a hypothesis is not treated
as a random variable. (The confidence level is, however, often incorrectly interpreted as
such a probability.) In Bayesian statistics one would use Bayes’ theorem (1.6) to assign
a probability to Hy, but this requires giving a prior probability, i.e. the probability that
the coin is fair before having seen the outcome of the experiment. In some cases this is
a practical approach, in others not. For the present we will remain within the classical
framework and simply give the confidence level or the P-value.

The P-value is thus the fraction of times one would obtain data as compatible with Hy
or less so if the experiment (i.e. 20 coin tosses) were repeated many times under similar
circumstances. By “similar circumstances” one means always with 20 tosses, or in general
with the same number of observations in each experiment. Suppose the experiment had
been designed to toss the coin until at least three heads and three tails were observed
and then to stop, and in the real experiment this happened to occur after the 20th toss.
Assuming such a design, one can show that the probability to stop after the 20th toss
or later (i.e. to have an outcome as compatible or less with Hy) is not 0.26% but rather
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0.072%, which would seem to lead to a significantly different conclusion about the validity
of Hy. Maybe we do not even know how the experimenter decided to toss the coin; we are
merely presented with the results afterwards. One way to avoid difficulties with the so-
called optional stopping problem is simply to interpret the phrase “similar experiments”
to always mean experiments with the same number of observations. Although this is an
arbitrary convention, it allows for a unique interpretation of a reported confidence level.
For further discussion of this problem see [Ber88, Oha94].

In the example with the coin tosses, the test statistic T' = nj;, was reasonable since from
the symmetry of the problem it was easy to identify the region of values of T' that have
an equal or lesser degree of compatibility with the hypothesis than the observed value.
This is related to the fact that in the case of the coin, the set of all possible alternative
hypotheses consists simply of all values of the parameter p not equal to 0.5, and all of
these lead to an expected asymmetry between the number of heads and tails.

4.4 The Significance of a Peak

In preparation.
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Chapter 5

General Concepts of Parameter
Estimation

In this chapter some general concepts of parameter estimation are examined which apply
to all of the methods discussed in Chapters 6 through 8. In addition, prescriptions for
estimating properties of p.d.f.’s such as the mean and variance are given.

5.1 Samples, Estimators, Bias

Consider a random variable @ described by a p.d.f. f(x). Here, the sample space is the
set of all possible values of x. A set of n independent observations of x is called a sample
of size n. A new sample space can be defined as the set of all possible values for the

n-dimensional vector ¥ = (xy,...,2,). That is, the entire experiment consisting of n
measurements is considered to be a single random measurement, which is characterized
by n numerical quantities, xy,...,x,. Since it is assumed that the observations are all

independent and that each x; is described by the same p.d.f. f(x), the joint p.d.f. for the

sample foumpie(®1,...,2,) is given by

Fsampte(@1, .o xn) = fla) flaz) - fla,) . (5.1)

Although the dimension of the random vector (i.e. the number of measurements) can in
practice be very large, the situation is greatly simplified by the fact that the joint p.d.f.
for the sample is the product of n p.d.f.’s of identical form.

Consider now the situation where one has made n measurements of a random variable
x, whose p.d.f. f(x) is not known. The central problem of statistics is to infer the
properties of f(x) based on the observations w1,...,2,. Specifically, one would like to
construct functions of the x; to estimate the various properties of the p.d.f. f(x). Often
one has a hypothesis for the p.d.f. f(z;6) which depends on an unknown parameter 6 (or
parameters 0 = (01,...,0,)). One then tries to construct a function of the observed x;
to estimate the parameters.

35



A function of the observed measurements xq,...,x, which contains no unknown
parameters is called a statistic. In particular, a statistic used to estimate some property of
a p.d.f. (e.g. its mean, variance or other parameters) is called an estimator. The estimator
for a quantity # is usually written with a hat, é, to distinguish it from the true value 6
whose exact value is (and may forever remain) unknown.

If converges to # in the limit of large n, the estimator is said to be consistent. This
is usually a minimum requirement for any useful estimator. In the following the limit of
large n will be referred to as either the “large sample” or “asymptotic” limit, and is also
sometimes called the “high statistics” limit. In situations where it is necessary to make
the distinction, the term estimator will be used to refer to the function of the sample
(i.e. its functional form) and an estimate will mean the value of the estimator evaluated
with a particular sample. The procedure of estimating a parameter’s value given the data
X1,...,2T, s usually called parameter fitting.

Since an estimator é(:z;l, ..., Z,) is a function of the measured values, it is itself a
random variable. That is, if the entire experiment were repeated many times, each time
with a new sample x1,...,x, of size n, the estimator é(:z;l, ..., &,) would take on different
values, being distributed according to some p.d.f. g(é; 6), which depends in general on the
true value of 8. The probability distribution of a statistic is called a sampling distribution.
Much of what follows in the next several chapters concerns sampling distributions and
their properties, especially expectation value and variance.

The expectation value of an estimator 0 with the sampling p.d.f. g(é; 0) is

Eld(er,... )] = /@é 0 (5.2)

/ / T1yenoy ) flx130) - flag; 0)dey - - - day,

where equation (5.1) has been used for the joint p.d.f. of the sample. Recall that this is
the expected mean value of # from an infinite number of similar experiments, each with
a sample of size n. One defines the bias of an estimator § as

b=FE[0]—0. (5.3)

Note that the bias does not depend on the measured values of the sample but rather on
the sample size, the functional form of the estimator and on the true (and in general
unknown) properties of the p.d.f. f(x), including the true value of §. A parameter for
which the bias is zero independent of the sample size n is said to be unbiased; if the bias
vanishes in the limit n — oo then it is said to be asymptotically unbiased. Note also that
an estimator § can be biased even if it is consistent. That is, even if 0 converges to the
true value # in a single experiment with an infinitely large number of measurements, it
does not follow that the average of 0 from an infinite number of experiments, each with
a finite number of measurements, will converge to the true value. Unbiased estimators
are thus particularly valuable if one would like to combine the result with those of other
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experiments. In most practical cases, the bias is small compared to the statistical error
(i.e. the standard deviation) and one does not usually reject using an estimator with a
small bias if there are other characteristics (e.g. simplicity) in its favor.

5.2 Estimators for Mean, Variance, Covariance

Suppose one has a sample of size n of a random variable z: zq,...,z,. It is assumed
that x is distributed according to some p.d.f. f(z) which is not known, not even as a
parameterization. We would like to construct a function of the z; to be an estimator for
the expectation value of x, yr. One possibility is the arithmetic mean of the x;, defined by

7= %Zx (5.4)

The arithmetic mean of the elements of a sample is called the sample mean, and is denoted
by a bar, e.g. T. This should not be confused with the expectation value (population mean)
of z, denoted by p or E[xz], for which T is an estimator.

The expectation value of the sample mean F[T] is given by (see equation (5.2))

Eszﬁéyﬂzgémmzééuzm (5.5)

since

Elz] ://xzf(xl)f(xn)dxldxn = (5.6)

for all i. One sees from equation (5.5) that the sample mean T is an unbiased estimator
for the population mean p.

Consider again a sample of size n of a random variable z from some unknown p.d.f.
f(x). The sample variance s* is defined by

1

n—17:

2
S _=

:(:1;2' _7)e (5.7)

By computing the expectation value of s* as done with T one can show that the sample

variance is an unbiased estimator for the population variance, o%. Similarly, one finds

that the statistic S? defined by

5% = 3o ) (5:)

is an unbiased estimator of o2 for a p.d.f. f(x) with known mean, p, and the quantity
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1

n—1

Vo= — > (o~ T~ ) 5.9)
=1

is an unbiased estimator for the covariance V, of two random variables x and y of unknown
mean. This can be normalized by the square root of the estimators for the sample variance
to form an estimator r,, for the correlation coefficient p,, (see equation (1.46)):

S5y (S (e -2 S e - 9)2)

Given an estimator 0 one can compute its variance V[0] = E[0%] — (E[])2. Recall
that V[0] (or equivalently its square root o) is a measure of the expected dispersion of ¢
about its mean in a large number of similar experiments each with sample size n, and as

such is often quoted as the statistical error of 0. For example, the variance of the sample

mean T 1s
_ 2 2 [N I ¢ 2
Vie) = B[] (B =E || =X o) | -2 —w
n =1 n 7=1
1 n
i,i=1,
1 o?
= |0 = (et + )] =
where o2 is the variance of f(z), and we have used the fact that Efz;z;] = p? for i # j

and E[x?] = u* + o*. This expresses the well known result that the standard deviation of
the mean of n measurements of x is equal to the standard deviation of f(x) itself divided

by v/n.

The expectation value and variance of the estimator of the correlation coefficient r,,
depend on higher moments of the joint p.d.f. f(x,y). For the case of the two-dimensional
Gaussian p.d.f. (2.28) they are found to be (see [Mui82] and references therein)

p(1 —p?)

Elr]=p - =

+ O(n7?) (5.12)

! (1—p%)" + O(n7?). (5.13)

Vir] = —

n
Although the estimator r given by equation (5.10) is only asymptotically unbiased, it
is nevertheless widely used because of its simplicity. Note that although \A/xy, 52 and 312/
are unbiased estimators of V., a2 and 05, the nonlinear function \A/l,y/(sxsy) is not an
unbiased estimator of V,, /(0,0,); cf. Section 6.2. Caution should be used when applying

equation (5.13) to estimate the significance of an observed correlation; see Section 9.5.
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Chapter 6

The Method of Maximum Likelihood

6.1 ML Estimators

Suppose a measurement of a certain random variable x has been repeated n times,
yielding the values (x1,...,2,). (Here, x could also represent a multidimensional random
vector, i.e. the outcome of each individual observation could be characterized by several
quantities.) Suppose, in addition, one has a composite hypothesis for the underlying
probability density function in the form of a parameterization, f(x; ), where  represents
one or possibly several unknown parameters. The task is to estimate the values of the
parameters. (This is in contrast to Chapter 5 where no parameterization of the unknown
p.d.f. was assumed.)

Under the assumption of the hypothesis f(x;6), including the value of 6, the
probability for the first measurement to be in the interval [y, 21 4 daq] is f(x1;0)dx;.
Since the measurements are all assumed to be independent, the probability to have the
first one in [x, 21 + dx4], the second in [z3, 25 4+ dx3], and so forth is given by

Probability that x; in [x;,x; + dx;] for all i = H flai; 0)da; . (6.1)
i=1
If the hypothesized p.d.f. and parameter values are correct, one expects a high probability
for the data that were actually measured. Conversely, a parameter value far away from
the true value should yield a low probability for the measurements obtained. Since the
dz; do not depend on the parameters, the same reasoning also applies to the following
function L,

n

1(6) = T[ f(x::0) (6.2)

=1

called the likelihood function. Note that this is just the joint p.d.f. for the x;, although it
is treated here as a function of the parameter, . The x;, on the other hand, are treated
as fixed (i.e. the experiment is over).
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With this motivation one defines the maximum likelihood (ML) estimators for the
parameters to be those which maximize the likelihood function. That is, for m parameters
01,...,0,,, one has the following set of m equations,

OL(by, ...
a0,

,0m)

(6.3)

=0,:=1,....m.
The equations can be solved for #¢,...,60,,, which are called the ML estimators. If more
than one maximum exists, the highest one is taken. As with other types of estimators, they
are usually written with hats, 64,...,8,,, to distinguish them from the true parameters 6;

whose exact values remain unknown.

The general idea of maximum likelihood is illustrated in Fig. 6.1. A sample of 50
measurements (shown as tick marks on the horizontal axis) was generated according to
a Gaussian p.d.f. with parameters ¢ = 0.2, ¢ = 0.1. The solid curve in Fig. 6.1(a) was
computed using the parameter values for which the likelihood function (and hence also its
logarithm) are a maximum: (i = 0.204 and & = 0.106. Also shown as a dashed curve is the
p.d.f. using the true parameter values. As is unavoidable because of random fluctuations,
the estimates i and & are not exactly equal to the true values p and o. The estimators
fi and & and their variances, which reflect the size of the statistical errors, are derived
below in Section 6.3. Figure 6.1(b) shows the p.d.f. for parameters far away from the true
values, leading to lower values of the likelihood function.

/; 6 T N T T T N T T T N T T T N T T T N T ]
— T —— In1=41.2 (ML fit) (a) ]
[ —-- InL=41.0 (true parameters) i
4+ - .
2 — —
I \ |
o L. (AL e L]
-0.2 0 0.2 0.4 0.6
X Figure 6.1: A sample of 50 observations
. — of a Gaussian random variable with mean
\é 6 T InlL=13.9 (b) ] i = 0.2 and standard deviation ¢ =
[ --- InL=18.9 ] 0.1. (a) The p.d.f. evaluated with the
4 - parameters that maximize the likelihood
i ] function and with the true parameters.
, L N (b) The p.d.f. evaluated with parameters
r el 1 far from the true values, giving a lower
S e ST 11 T T TS T likelihood.
-0.2 0 0.2 0.4 0.6

X

The motivation for the ML principle presented above does not necessarily guaranty
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any optimal properties for the resulting estimators. The ML method turns out to have
many advantages, among them ease of use and the fact that all of the available information
from the data is used (i.e. no binning is required). In the following the desirability of ML
estimators will be investigated with respect to several criteria, most importantly variance
and bias.

6.2 Example of ML Estimator: an Exponential
Distribution

Suppose the proper decay times for unstable particles of a certain type have been measured
for n decays, yielding values ¢;,...,%,, and suppose one chooses as a hypothesis for the
distribution of ¢t an exponential p.d.f. with mean 7:

1
flt;r) ==V, (6.4)

T
The task here is to estimate the value of the parameter 7. Rather than using the likelithood
function as defined in equation (6.2) it is usually more convenient to use its logarithm.

From the condition

T=7 B Za

=0 (6.5)

T=7

dlog L 1 0L
or

one obtains the same estimators as from maximizing L, with the advantage that the
product in L is converted into a sum, and exponentials in f are converted into simple
factors. The log-likelihood function is then

log L(7) = ilog fltisr) = Zn: (log L t—Z) : (6.6)

. _ L5
T_nztl' (6.7)

In this case the ML estimator 7 is simply the sample mean of the measured time values.
The expectation value of 7 is

E[%(tl,,tn)] = %(tl,..., n fjoint(tla---atn;T) dtldtn (68)

tn)
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zn: (/t et dy, H/—e_tﬂ/Tdt)

1=1 e

S

3|>—k 3|>—k

so 7 1s an unbiased estimator for 7. We could have concluded this from the results of
Sections 2.4 and 5.2, where it was seen that 7 is the expectation value of the exponential
p.d.f., and that the sample mean is an unbiased estimator of the expectation value for
any p.d.f. (See Chapter 11 for a derivation of the p.d.f. for 7.)

As an example consider a sample of 50 Monte Carlo generated decay times ¢ distributed
according to an exponential p.d.f. as shown in Fig. 6.2. The values were generated using
a true lifetime 7 = 1.0. Equation (6.7) gives the ML estimate 7 = 1.062. The curve shows
the exponential p.d.f. evaluated with the ML estimate.

—~ 1 L B AL B L B
W L A
- V :
0.75 F ]
05 F i
i 1 Figure 6.2: A sample of 100 Monte
H . Carlo generated observations of an
0.25 B B exponential random variable £ with mean
I 1 7 = 1.0. The curve is the result of a
» . maximum likelihood fit, giving 7 = 1.062.
S 1A A
0 1 2 3 4 5
t

Suppose that one is interested not in the mean lifetime but in the decay constant
A =1/7. How can we estimate A7 In general, given a function a(f) of some parameter 6,
one has

oL _ oL
20— Oa 00
Thus 0L/00 = 0 implies dL/0a = 0 at a = a(f) unless da/00 = 0. As long as this

is not the case, one obtains the ML estimator of a function simply by evaluating the
function with the original ML estimator, i.e. ¢ = a(f). The estimator for the decay

=0. (6.9)

constant is thus A = /7 =n/>" t;. The transformation invariance of ML estimators
is a convenient property, but an unbiased estimator does not necessarily remain so under
transformation. As will be derived in Section 10.1, the expectation value of A is
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Eij=y—"__-Ll_n (6.10)

n—1 rn—1"

50 A = 1/7 is an unbiased estimator of 1/7 only in the limit of large n, even though 7
is an unbiased estimator for 7 for any value of n. To summarize, the ML estimator of a
function a of a parameter 4 is simply a = a(é). But if 4 is an unbiased estimator of 6
(E[0] = 0) it does not necessarily follow that () is an unbiased estimator of a(0). It can
be shown, however, that the bias of ML estimators goes to zero in the large sample limit
for essentially all practical cases. (An exception to this rule occurs if the allowed range of

the random variable depends on the parameter; see [Ead71] Section 8.3.3.)

6.3 Example of ML estimators: Gaussian of
Unknown p and o

Suppose one has n measurements of a random variable = assumed to be distributed
according to a Gaussian p.d.f. of unknown p and 2. The log-likelihood function is

" " 1 1 L (2 —p)?
2 . 2y — S ~ 7
log L(p, 0%) = ;:1 log f(xs; p,07) = 2221 (log N + §log R . (6.11)

Setting the derivative of log I with respect to p1 equal to zero and solving gives

1 n
== u;. (6.12)
n 4

Computing the expectation value as done in equation (6.8) gives E[{i] = u, so fi is
unbiased. (As in the case of the mean lifetime estimator 7, /i here happens to be a sample
mean, so one knows already from Sections 2.5 and 5.2 that it is an unbiased estimator for
the mean p.) Repeating the procedure for o and using the result for i gives

(i — )? (6.13)

Computing the expectation value of ;\2, however, gives

Bl = "L (6.14)

n

The ML estimator o2 is thus biased, but the bias vanishes in the limit of large n.

2

Recall, however, from Section 5.1 that the sample variance s is an unbiased estimator

for the variance of any p.d.f., so that
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1

n—17:

2
S _=

> (i - ) (6.15)

is an unbiased estimator for the parameter o? of the Gaussian. To summarize, equation
(6.13) gives the ML estimator for the parameter o2, and it has a bias that goes to zero as
n approaches infinity. The statistic s from equation (6.15) is not biased (which is good)
but it is not the ML estimator.

6.4 Variance of ML Estimators: Analytic Method

Given a set of n measurements of a random variable  and a hypothesis for the p.d.f.
f(x;0) we have seen how to estimate its parameters. The next question is, what are
the statistical errors on the estimates? That is, if we repeated the entire experiment
a large number of times (with n measurements each time) each experiment would give
different estimated values for the parameters. How widely spread will they be? One way
of summarizing this is with the variance (or standard deviation) of the estimator.

For certain cases one can compute the variances of the ML estimators analytically.
For the example of the exponential distribution with mean 7 estimated by 7 = £ 377", ¢;,
one has

V7] = E[#’]—(E[7])? (6.16)
1\ 1
— // _Zti) _e—tl/T,.._e—tn/ﬂ'dtl...dtn_
nizl T T
1 1 1 ?
(// (_Zti) _e—t1/7'..._e—tn/Tdtl...dtn)
nizl T T
v
= —,

This could have been guessed, since it was seen in Section 5.2 that the variance of
the sample mean is 1/n times the variance of the p.d.f. of ¢ (the time of an individual
measurement ), for which in this case the variance is 72, (Section 2.4) and the estimator 7
happens to be the sample mean.

Remember that the variance of 7 computed in equation (6.16) is a function of the
true (and unknown) parameter 7. So what do we report for the statistical error of the
experiment? Because of the transformation invariance of ML estimators (equation (6.9))

we can obtain the ML estimate for the variance 0 = 7%/n simply by replacing 7 with

s =

its own ML estimator 7, giving ;\% = 7%/n, or similarly for the standard deviation,

o; =7/y/n.
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When an experimenter then reports a result like 7 = 7.82 £ 0.43, it is meant that the
estimate (e.g. from ML) is 7.82, and if the experiment were repeated many times with the
same number of measurements per experiment, one would expect the standard deviation
of the distribution of the estimates to be 0.43. This is one possible interpretation of the
“statistical error” of a fitted parameter, and is independent of exactly how (according to
what p.d.f.) the estimates are distributed. It is not, however, the standard interpretation
in those cases where the distribution of estimates from many repeated experiments is not
Gaussian. In such cases one usually gives the so-called 68.3% confidence interval, which
will be discussed in Chapter 9. This is the same as plus or minus one standard deviation
if the p.d.f. for the estimator is Gaussian. It can be shown (see e.g. reference [Ken79],
[Fro79]) that in the large sample limit, ML estimates are in fact distributed according to
a Gaussian p.d.f., so in this case the two procedures lead to the same result.

6.5 Variance of ML Estimators: Monte Carlo
Method

For cases that are too difficult to solve analytically, the distribution of the ML estimates
can be investigated with the Monte Carlo method. To do this one must simulate a
large number of experiments, compute the ML estimates each time and look at how the
resulting values are distributed. For the “true” parameter in the Monte Carlo program the
estimated value from the real experiment can be used. As has been seen in the previous
section, the quantity s? defined by equation (5.7) is an unbiased estimator for the variance
of a p.d.f. Thus one can compute s for the ML estimates obtained from the Monte Carlo
experiments and give this as the statistical error of the parameter estimated from the real
measurement.

As an example of this technique, consider again the case of the mean lifetime
measurement with the exponential distribution (Section 6.2). Using a true lifetime of
7 = 1.0, a sample of n = 50 measurements gave the ML estimate 7 = 1.062 (see Fig. 6.2).
Regarding the first Monte Carlo experiment as the “real” one, the procedure was then
repeated 1000 times, with 50 measurements per experiment. The true value was taken to
be 7 = 1.062, i.e. the ML estimate of the first experiment.

Figure 6.3 shows a histogram of the resulting ML estimates. The sample mean of
the estimates is 7 = 1.059, which is close to the input value, as expected since the ML
estimator 7 is unbiased. The sample standard deviation from the 1000 experiments is
s = 0.151. This gives essentially the same error value as what one would obtain from
equation (6.16), &; = #/y/n = 1.062/1/50 = 0.150. For the real measurement one would
then report (for either method to estimate the error) 7 = 1.06 4 0.15.
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6.6 Variance of ML Estimators: the RCF Bound

It turns out in many applications to be too difficult to compute the variances analytically,
and a Monte Carlo study usually involves a significant amount of work. In such cases
one typically uses the Rao-Cramér-Frechet (RCF) inequality (see e.g. [Ken79], [Fro79],
[Bra92]) which gives a lower bound on an estimator’s variance. This inequality applies to
any estimator, not just those constructed from the ML principle. For the case of a single
parameter § the limit is given by

V(0] > (1+ %)Q/E [_02%1 : (6.17)

where b is the bias as defined in equation (5.3) and L is the likelihood function. Equation
(6.17) is not, in fact, the most general form of the RCF inequality, but the conditions under
which the form presented here hold are almost always met in practical situations; see e.g.
[Ead71] Section 7.4.5. In the case of equality (i.e. minimum variance) the estimator is
said to be efficient. It can be shown (see e.g. references [Ken79], [Fro79]) that if efficient
estimators exist for a given problem, the maximum likelihood method will find them.
Furthermore it can be shown that ML estimators are always efficient in the large sample
limit. In practice, one often assumes efficiency and zero bias and hopes that this is a good
approximation. In cases of doubt one should check the results with a Monte Carlo study.
The general conditions for efficiency are discussed in e.g. [Ead71] Section 7.4.5, [KenT79].

For the example of the exponential distribution with mean 7 one has from equation

(6.6)
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d?logl n 21 < 27
Pk (25 (1) o

72 T

and 0b/0T = 0 since b = 0 (see equation (6.8)). Thus the RCF bound for the variance

(also called the minimum variance bound, or MVB) of 7 is

1 1 2
VI[] = = = —, (6.19)
n

Bl-pa-9] -x (=)

where we have used equation (6.8) to obtain E[7]. Since 72/n is also the variance obtained
from the exact calculation (equation (6.16)) we see that equality holds and 7 = £ 377, ¢
is an efficient estimator for the parameter 7.

=

For the case of more than one parameter, 64, ...,48,,, the corresponding formula for the
inverse of the covariance matrix of their estimators V;; = cov[f;, §,] is (assuming efficiency
and zero bias)

2
0% log L] (6.20)

(V7= £ l 00,00,

This is then inverted to find V;;, which can then be estimated by evaluating it with the
ML estimates # = §. Note that equation (6.20) can be written

82 n n
(V7 = R ( logf(xk;e,...,Hm)) fla; 01,00, 00)day
! / /aaiaej ,; ! l:Hl !
2

)
_ n./_f(x;el,..., ") 590 57 log f(2;01,....00)dz | (6.21)

where f(x;61,...,0,) is the p.d.f. for the random variable z, for which one has n
measurements. That is, the inverse of the RCF bound for the covariance matrix (also
called the Fisher information matriz, see [Ead71] Section 5.2 and [Bra92]) is proportional
to the number of measurements in the sample, n. This expresses the well-known result
that statistical errors (at least for efficient estimators) decrease in proportion to 1//n.

It turns out to be impractical in many situations to compute the RCF bound
analytically, since this requires the expectation value of the second derivative of the log-
likelihood function (i.e. an integration over the measured random variable ). In the case
of a sufficiently large sample (large number of individual measurements in the experiment)
one can estimate V! by evaluating the second derivative with the measured data and
the ML estimates of

— 82 log L
Thy.
(Vi = 00,00,

(6.22)
J lg=d
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For a single parameter # this reduces to

- 9% log L
e

This is the usual method for estimating the covariance matrix when the likelihood function
is numerically maximized with a computer.!

(6.23)

6=>0

6.7 Variance of ML Estimators: Graphical Method

A simple extension of the previously discussed method using the RCF bound leads to a
graphical technique for obtaining the variance of ML estimators. Consider the case of a

single parameter #, and expand the log-likelihood function in a Taylor series about the
ML estimate 6:

A A 2 A
log L(0) =log L(0) + [alOgL] L [a logL]
=0 =0

a0 (O=0) + 5| =g (0=0) +.... (6.24)

By definition of 0 we know that log L(é) = log L4 and that the second term in the

expansion is zero. Estimating the variance of #, ¢?; by the RCF bound and ignoring
higher order terms gives

0 — 0)?
log L(G) = log Lmaac — g 5 (625)
20%;
or
. 1
log L(0 £+ 64) = log Lyas — 7 (6.26)

That is, a change in the parameter 6 of one standard deviation from its ML estimate leads
to a decrease in the log-likelihood of 1/2 from its maximum value.

It can be shown that the log-likelihood function is a parabola (i.e. the likelihood
function is a Gaussian curve) in the large sample limit [Fro79]. If this is not the case,
one can nevertheless adopt equation (6.26) as the definition of the statistical error. The
interpretation of such errors is discussed further in Chapter 9.

As an example of the graphical method for determining the variance of an estimator,
consider again the examples of Sections 6.2 and 6.5 with the exponential distribution.

'For example, the routines MIGRAD and HESSE in the program MINUIT [Jam89] numerically
compute the matrix of second derivatives of log L using finite differences, evaluate it at the ML estimates,
and invert to find the covariance matrix.
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Figure 6.4 shows the log-likelihood function log L(7) as a function of the parameter 7
for a Monte Carlo experiment consisting of 50 measurements. The standard deviation
of 7 is estimated by changing 7 until log L(7) decreases by 1/2, giving A7_ = 0.137,
A7y = 0.165 (see figure). In this case log L(7) is reasonably close to a parabola and
one can approximate ; ~ A7_ ~ A7, & 0.15. This leads to approximately the same
answer as from the exact standard deviation 7/y/n evaluated with 7 = 7. In Chapter 9
the interval [7 — A7_, 7 4+ A7,] will be reinterpreted as an approximation for the 68.3%
central confidence interval (cf. Section 9.6).

N 752~5 T T T N T T T N T T T N T T T
= L ]
N—
_ - R i
o L T—AT T T+AT, |
IS i | ]
—53

_535 Figure 6.4: Log-likelihood function
h log L(7) as a function of 7. In the large
sample limit the widths of the intervals

[ — A7_, 7] and [7, 7 + A74] correspond

to one standard deviation ;.

6.8 Example of ML with Two Parameters

As an example of the maximum likelihood method with two parameters, consider a particle
reaction where each scattering event is characterized by a certain scattering angle 6 (or
equivalently @ = cos ). Suppose a given theory predicts the angular distribution

1+ ax + Bz?

23 (6.27)

flzia,B) =

(e.g.aa=0and 3 =1foreTe”— ptu™ in lowest order quantum electrodynamics [Qui83].)
Note that the denominator 2 + 23/3 is necessary for f(x;a,3) to be normalized to one
for -1 <z <1.

To make the problem slightly more complicated (and more realistic) assume that the
measurement is only possible in a restricted angular range, say ,,;, < & < Z,,4,. This
requires a recalculation of the normalization constant, giving
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1+ ax + Bz?

(wmax - xmzn) + %(xgnaac - xzmn) + g(xifnaac - x?mn)

flz;a,8) = (6.28)

Figure 6.5 shows a histogram of a Monte Carlo experiment where 2000 events were
generated using o = 0.5, = 0.5, 2,5, = —0.95 and z,,,, = 0.95. By numerically
maximizing the log-likelihood function with the program MINUIT one obtains

= 0.508 +0.052,
0.466 £ 0.108 (6.29)

= &
|

where the statistical errors correspond to the square roots of the variance. These
are estimated by the routine HESSE by numerically computing the matrix of second
derivatives of the log-likelihood function with respect to the parameters and then
inverting, as described in Section 6.6. In the same manner one obtains the estimate of the
covariance cov|é&, B] = 0.00257 or equivalently the correlation coefficient r,5 = 0.458. One
sees that the estimators & and B are positively correlated. Note that the histogram itself

is not used in the procedure; each value of x is used to compute the likelihood function.

w T T T [ T T T T [ T T T T ] T T T T

i | —— Monte Carlo data |
é 08 r---- ML fit result .
A Figure 6.5: Histogram based on 2000
Monte Carlo generated values of z(=
0.6 cos ) distributed according to equation
(6.28) with o = 0.5, = 0.5. Also shown
is the result of the ML fit, which gave
0.4 & = 0.508 & 0.052 and 3 = 0.466 & 0.108.
The errors were computed numerically
using equation 6.22.
0.2

cos ¥

To understand these results more intuitively it is useful to look at a Monte Carlo study
of 500 similar experiments, all with 2000 events with o = 0.5 and 3 = 0.5. A scatter plot
of the ML estimates & and B are shown in Fig. 6.6(a). The density of points corresponds
to the joint p.d.f. for & and 3. Also shown in Fig. 6.6 (b) and (c¢) are the normalized
projected histograms for & and B separately, corresponding to the marginal p.d.f.’s, i.e.
the distribution of & integrated over all values of B, and vice versa. One sees that the
marginal p.d.f.’s for & and B are both approximately Gaussian in shape.
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Figure 6.6: Results of ML fits to 500 Monte Carlo generated data sets. (a) The fitted values of & and

3. (b) The marginal distribution of 3. (¢) The marginal distribution of &.
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The sample means, standard deviations and covariance (see Section 5.2) from the

Monte Carlo experiments are:

~

& = 0.499 B = 0.498

sq = 0.051 sz =0.111

~

(6.30)

Vs = 0.00235 1,5 = 0.418

Note that & and B are in good agreement with the “true” values put into the Monte
Carlo, (o = 0.5 and # = 0.5) and the sample (co)variances are in good agreement with

the values estimated numerically from the RCF bound.

The fact that & and B are correlated is easily seen from the fact that the band of
points in the scatter plot is tilted. That is, if one required & > a, this would lead to an

enhanced probability to also find B > 3. In other words, the conditional p.d.f. for & given
(> [ is centered at a higher mean value and has a smaller variance than the marginal

p.d.f. for a.

Figure 6.7 shows the positions of the ML estimates in the parameter space (i.e.
log L(&, 3) = log Lina,) along with a contour corresponding to log L = log Lar — 1/2.

w 0.7

0.6

0.5

0.4

0.3

— frue value

Figure 6.7: The contour logl =
log Linar —1/2 shown with the true values
for the parameters («, ) and the ML
estimates (&, B) In the large sample limit
the tangents to the curve correspond to
&+ b4 andéi&ﬁ.

In the large sample limit the log-likelihood function takes on the form (see reference

[Fro79])

log L(a, 8) = log Linar — 0 _1/)2 | [(aa— oz) n (5

af
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The contour of log L(e, 3) = log Lyar — 1/2 is thus given by

Al 2 ~
1 —a\’ — —a —
L —pis o og Ou op
which is called the covariance ellipse. It is centered at the ML estimates (&,B) and has
an angle ¢ with respect to the « axis given by

2po,,
fan 2¢ = 0'2” Ug@ . (6.33)
a Yp

Note in particular that the tangents to the ellipse are at « = & £ 0,,08 = B + 05 (see
Fig. 6.7). If the estimators are correlated, then changing a parameter by one standard
deviation corresponds in general to a decrease in the log-likelihood of more than 1/2.
If one of the parameters, say (3, were known, then the standard deviation of & would
be somewhat smaller, since this would then be given by a decrease of 1/2 in log L(«).
Similarly, if additional parameters (v, 4,...) are included in the fit, and if their estimators
are correlated with &, then this will result in an increase in the standard deviation of &.

6.9 Maximum Likelihood with Binned Data

Consider n observations of a random variable x distributed according to a p.d.f. f(x;8)
for which one would like to estimate the unknown parameter 6 (or parameters 6y, ...,6,,).
For very large data samples the log-likelihood function becomes difficult to compute since
one must sum log f(x;;8) for each value x;. In such cases instead of recording the value
of each measurement one usually makes a histogram, yielding a certain number of entries
ki,...,kny in N bins. The expectation value of the number of entries in bin 7 is given by

\i(6) = n/ Fla:0)de (6.34)

n max

where 7" and 27 are the bin limits. One can regard the histogram (i.e. the N values
k;) as a single measurement of an N-dimensional random vector for which the joint p.d.f.

is given by a multinomial distribution (equation (2.8))
n! MYT A\
f]mnt(k‘l,,k‘N,)\l,,)\N) = m (;) (7) . (635)

The probability to be in bin ¢ has been expressed as the expectation value A; divided by the
total number of entries n. Taking the logarithm of the joint p.d.f. gives the log-likelihood
function,
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log L(0) = fj i log Xi(0) . (6.36)

where additive terms not depending on the parameters have been dropped. (This is
allowed since the estimators depend only on derivatives of log L.) The estimators 0 are
found by maximizing log L by whatever means available (e.g. numerically). In the limit
that the bin size is very small (i.e. N very large) the likelihood function becomes the
same as that of the ML method without binning (equation (6.2)). Thus the binned ML
technique does not encounter any difficulties if some of the bins have few or no entries.
This is in contrast to an alternative technique using the method of least squares discussed
in Section 7.5.

As an example consider again the sample of 50 measured particle decay times that
we examined in Section 6.2, for which the maximum likelihood result without binning is
shown in Fig. 6.2. Figure 6.8 shows the same sample displayed as a histogram with a bin
width of At = 0.5. Also shown is the fit result obtained from maximizing the log-likelihood
function based on equation (6.36). The result is 7 = 1.067, in good agreement with the
unbinned result of 7 = 1.062. Estimating the standard deviation from the curvature of
the log-likelihood at its maximum (equation (6.23)) results in 6+ = 0.171, slightly larger
than that obtained without binning.

—~ 25 e
~— F data
Z P J
o0 R - —— ML fit to histogram ]
15 ' -
0 F .
5 o B Figure 6.8: Histogram of the data
[ M ] sample of 50 particle decay times from
o T T R I i PSS, Section 6.2 with the ML fit result.
0 1 2 3 4 5
t

In many problems one may want to regard the total number of entries n as a random
variable from a Poisson distribution with mean v. The value of v may itself depend on
the other parameters @, or it may be independent of them.? That is, the measurement is

2For example, in a particle scattering reaction both the total cross section (i.e. v) and the angular
distribution of the outgoing particles (Aq, ..., Ax) depend in general on parameters such as particle masses
and coupling constants.
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defined to consist of first determining n from a Poisson distribution and then distributing
n observations of x in a histogram with N bins, giving ky, ..., ky. The joint p.d.f. for n
and kq,...,ky is the product of a Poisson distribution and a multinomial distribution,

Ve n! A h AN =
f]oznt(nvklvvk]\fal/?)‘lv7)‘N): o kl’kN’ (7) (7) ) (637)

where one has the constraints vazl A; = v and vazl k; = n. Using these in equation

(6.37) gives

N )
fjoint(klv"'7kN;)‘17"'7)‘N) = H 6_/\i (638)

where the mean number of entries in each bin now depends on the parameters § and v,

max

h

A0, v) = 1//

xr

i fla;0)dax . (6.39)

From the joint p.d.f. (6.38) one sees that the problem is equivalent to treating the
number of entries in each bin as an independent Poisson random variable with mean A;.
Taking the logarithm of the joint p.d.f. and dropping terms that do not depend on the
parameters gives

N
log L(0,v) = > kilog \i(0,v) — v . (6.40)

=1

Setting the derivative of log I with respect to v equal to zero gives the ML estimator for
the total number of entries o,

b= k=n, (6.41)

=1

as one might expect. Since the expectation value of a Poisson variable is equal to its
mean, = n is an unbiased estimator for v. The estimators for the parameters 0 are
clearly the same as those from the case where n was treated as a constant. Any quantity
depending on the total number of entries will now have an additional source of fluctuation,
however, since  is a random variable. If v does not depend on the parameters , one has

0*log L/000v = 0, and thus v and § are uncorrelated.
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6.10 Testing Goodness-of-Fit with Maximum
Likelihood

Although the principle of maximum likelihood defines a technique for estimating the
parameters of a hypothesized p.d.f. it does not provide a convenient method of assessing
the goodness-of-fit. That is, for a given p.d.f. the ML principle says one should maximize
the likelihood function to estimate the parameters. One does not immediately know
however, whether L,,,, could have been higher for some other p.d.f., or how high in
absolute terms one should expect L,,,. to be if the hypothesis is correct. This is one of
the major disadvantages of the maximum likelihood method compared to e.g. the method
of least squares discussed in Chapter 7.

One way to investigate the goodness-of-fit is to perform a large number of Monte
Carlo experiments with the same number of measurements as the real experiment. For
the “true” Monte Carlo parameters, the ML estimates from the real experiment can be
used. One then looks at the distribution of the value of the maximized log-likelihood
function, log Lp,q,. This is shown in Fig. 6.9 for the example of the scattering experiment
discussed in Section 6.8. There the data set shown in Fig. 6.5 gave & = 0.508, B = 0.466
and log L., = 2436.4. Using these parameter values results in the distribution of log L,
values shown in Fig. 6.9. One would have reason to suspect the hypothesis if the real
experiment gave a lower log L., than some large fraction of the Monte Carlo experiments.
Given a value of log L., from a real experiment, one can compute a confidence level (or
P-value) as described in Section 4.3, to be used as a measure of the goodness-of-fit.

— L
JE 0.025 } actual 10g Lpe 5
@) L ] ,
e L confidence <
— 0.02 C level —
0.015 F .
r Figure 6.9: Normalized histogram of
0.01 - ] the values of the maximized log-likelihood
E 1 function log L4, for 500 Monte Carlo
0.005 r 7 experiments. The vertical line shows the
L i value of log L4, obtained using the data
o L.t .. N e N shown in Fig. 6.5. (See text.)
2300 2400 2500 2600
100 Lingy

A much simpler qualitative test of the goodness-of-fit is to compare a histogram of
the data (normalized to unit area) with the fitted p.d.f. Although the ML fit itself is
independent of the binning of the histogram, a visual comparison of the two is a way to
quickly check whether the hypothesis is reasonable.
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6.11 Combining Measurements with Maximum

Likelihood

Consider an experiment in which one has n measured values of a random variable z,
for which the p.d.f. f.(x;0) depends on an unknown parameter 6. Suppose in another
experiment one has m measured values of a different random variable y, whose p.d.f.
fy(y;0) depends on the same parameter §. For example, x could be the invariant mass
of electron-positron pairs produced in proton-antiproton collisions, and y could be the
invariant mass of muon pairs. Both distributions have peaks at around the mass My
of the Z° boson, and so both p.d.f.’s contain My as a parameter. One then wishes to
combine the two experiments in order to obtain the best estimate of the parameter.

The two experiments together can be interpreted as a single measurement of a vector
containing n values of x and m values of y. The likelihood function is therefore

m

Lw):ﬁ ) T30 = 1200)- 1,0, (6.42)

or equivalently its logarithm is given by the sum log L(0) = log L,(6) 4 log L,(0).

Thus as long as the likelihood functions of the experiments are available, the full
likelihood function can be constructed and the ML estimator for # based on both
experiments can be determined. This technique includes of course the special case where
x and y are the same random variable, and the samples x1,..., 2z, and yq,...,y, simply
represent two different subsamples of the data.

More frequently one does not report the likelihood functions themselves, but rather
only estimates of the parameters. Suppose the two experiments based on measurements
of  and y give estimators 0, and éy for the parameter #, which themselves are random
variables distributed according to the p.d.f.’s gl,(éx; f) and gy(é ;60). The two estimators
can be regarded as the outcome of a single experiment yielding the two-dimensional vector
((91,, 0 y). As long as d, and (9 are independent, the log-likelihood function is given by the
sum

log L(0) = 10g gz(0; 0) + log g,(0,; 0) - (6.43)

For large data samples the p.d.f.’s g, and g, can be assumed to be Gaussian, and one

reports the estimated standard deviations ¢; and 6 G;, as the errors on 6, and (9 As will
be seen in Chapter 7, the problem is then equivalent to the method of least squares, and
the combined estimate for # is given by the weighted average

0,162 +0,/62
1/62 +1/62
x u

0 = (6.44)

with the estimated variance
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NP 1

0= — . A
U o /3% (6.45)

This technique can clearly be generalized to combine any number of measurements.
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Chapter 7

The Method of Least Squares

7.1 Connection with Maximum Likelihood

In many situations a measured value y can be regarded as a Gaussian random variable
centered about the quantity’s true value A. This follows from the central limit theorem
as long as the total error (i.e. deviation from the true value) is the sum of a large number
of small contributions. A more detailed discussion of the conditions under which errors
can be regarded as Gaussian can be found in references [Bra92], [Ead71], [Fro79].

With this motivation for the importance of Gaussian errors, consider a set of N
independent Gaussian random variables y;, each of which is associated to another variable
z;y,t = 1,..., N, which is assumed to be known without error. (For example, one has N
measurements of a cross section y; = o(F;) at different energies x; = F;.) Assume that
each has a different unknown mean, );, and a different but known variance, o?. The
N measurements of y; can be equivalently regarded as a single measurement of an N-
dimensional random vector. The joint p.d.f. for the y; is the product of N Gaussians,

2 2 Al 1 _(yi_yiT)z
g(ylv"'7yN;)‘17'"7)‘N70-17"'70-N):H exp 952 : (71)
=1 /2702 g;

Suppose further that we have a hypothesis for the functional dependence of A on z,
A= fla 5) which depends on unknown parameters 0 = (01,...,0,). The primary aim
of the method of least squares is to estimate the parameters 0,...,6,,. In addition, the
method allows for a simple evaluation of the goodness-of-fit of the hypothesized p.d.f.

Taking the logarithm of the joint p.d.f. and dropping additive terms that do not depend
on the parameters gives the log-likelihood function,

ST Y1) -

=1 7

This is maximized by finding the values of the parameters 0 that minimize the quantity
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SUES> (yi fa(;/'i;@))? | (7.3)

namely, the quadratic sum of the differences between measured and hypothesized values,
weighted by the inverse of the variances. This is the basis of the method of least squares
(LS), and is used to define the procedure even in cases where the individual measurements
y; are not Gaussian, but as long as they are independent.

If the measurements are not independent but described by an N-dimensional Gaussian
p.d.f. with known covariance matrix V' but unknown mean values, the corresponding log-

likelihood function is obtained from the logarithm of the joint p.d.f. given by equation
(2.26)

log L) = —5 3 (i~ Flas D)V )ity — Slas: ) (7.4

1,5=1
where additive terms not depending on the parameters have been dropped. This is
maximized by minimizing the quantity

N

— — —

XAO0) = > (yi — e 0) (V7 )iy; — fla:0)) (7.5)

1,5=1

which reduces to equation (7.3) if the covariance matrix (and hence its inverse) are
diagonal.

A

The parameters that minimize the y? are called the LS estimators, él, coy B As will
be discussed in Section 7.5, the resulting minimum Y? follows under certain circumstances
the y? distribution, as defined in Section 2.6. Because of this the quantity defined by
equations (7.3) or (7.5) is often called y?, even in more general circumstances where its
minimum value is not distributed according to the y? p.d.f.

7.2 Linear Least-Squares Fit

—

Although one can carry out the least-squares procedure for any function f(x;6), the
resulting y? value and LS estimators have particularly desirable properties for the case
where f(x;0) is a linear function of the parameters § = (0y,...,60,,):

fla;01,...,0,) = Z@th(x) , (7.6)

where the h;(x) are any linearly independent functions of x. (What is required is that
f is linear in the parameters 6;. The h;(x) are not in general linear in x, they are just
linearly independent from each other, i.e. one cannot be expressed as a linear combination
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of the others.) For this case, the estimators and their variances can be found analytically,
although depending on the tools available one may still prefer to maximize y* numerically
with a computer. Furthermore, the estimators have zero bias and minimum variance. This
follows from the Gauss-Markov theorem (see [Ken79] Section 19.3) and holds regardless
of the number of measurements NV, and the p.d.f.’s of the individual measurements.

Using equation (7.6) for the form of f(x; 5) in the definition of the y? (equation (7.3))
and differentiating with respect to the parameters 6; to find the minimum gives

axz N —2h Z; e
WzZ%[yi—Z%(m] =0, k=1,....m, (7.7)
k 7=1

1=1 ? 7
or m equations which can be solved for the m estimators, él, ey 0,,. (These equations
and their solutions are often expressed in matrix form; see e.g. references [Fro79], [Bra92].)
The estimators can be shown to have zero bias and a covariance matrix whose inverse can
be estimated by

_ N hZ T h. Tk
(V 1)2,], = Z ( 321( ) : (7.8)
or equivalently by
1 62X2
1y 1

If the variances o} are exactly known, then equations (7.8) and (7.9) give the exact inverse
covariance matrix (V~!);;. Note that equation (7.9) coincides with the RCF bound for
the covariance matrix in the situation of Section 7.1, with log L = —x?/2.

For the case of f(x; 5) linear in the parameters 0 the \? is parabolic in 0

Xz((gl,...,(gm):Xz((gl,...,(gm)—l-% f: [ A((gi—(gi)(@]‘—@j) . (710)

Combining this with the expression for the variance given by equation (7.9) yields the
contours in parameter space whose tangents are at §;,£6;, corresponding to a one standard
deviation departure from the LS estimates:

N N

O, 0,) =01, 0,) F1 =2, +1. (7.11)

This contour corresponds directly to the covariance ellipse seen in connection with the

maximum-likelihood problem of Section 6.10. If the function f(x;6) is not linear in the
parameters, then the contour defined by equation (7.11) is not, in general, elliptical, and
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one can no longer obtain the standard deviations from the tangent planes. It defines a
region in parameter space, however, which can be interpreted as a confidence region, the
size of which reflects the statistical uncertainty of the fitted parameters. The concept of
confidence regions will be defined more precisely in Chapter 9.

7.3 Least-Squares Fit of a Polynomial

As an example of the least-squares method consider the data shown in Fig. 7.1, consisting
of five values of a quantity y measured with errors Ay at different values of x. Assume the
measured values y; each come from a Gaussian distribution centered around y! (which
is unknown) with a standard deviation o; = Ay; (assumed known). As a hypothesis for
A = f(«) one might try a polynomial of order m (i.e. m + 1 parameters),

(@300, ..,0,) = 0" (7.12)

This is a special case of the linear least squares fit described in Section 7.2 with the
coefficient functions h;(x) equal to powers of x. Figure 7.1 shows the LS fit result for
polynomials of order zero, one and four. The zero-order polynomial is simply the average
of the measured values, with each point weighted inversely by the square of its error. This
hypothesis gives fo = 2.665 & 0.127 and x* = 45.5 for four degrees of freedom (five points
minus one free parameter). The data are better described by a straight-line fit (first order
polynomial) giving fo = 0.932 + 0.297, 0, = 0.675+0.105 and x? = 3.99 for three degrees
of freedom. Since there are only five data points, the fourth order polynomial (with five
free parameters) goes exactly through every point yielding a y? of zero. The use of the
x? value to evaluate the goodness-of-fit will be discussed in Section 7.5.

As in the case of the maximum likelihood method, the statistical errors and covariances
of the estimators can be estimated in several ways. All are related to the change in the y?
as the parameters are moved away from the values for which y? is a minimum. Fig. 7.2(a)
shows the \? as a function of f for the case of the zero-order polynomial. The y?
curve is a parabola, since the hypothesized fit function is linear in the parameter §, (see
equation (7.10)). The variance of the LS estimator 0o can be evaluated by any of the
methods discussed in Section 7.2: from the change in the parameter necessary to increase
the minimum x? by one, from the curvature (second derivative) of the parabola at its
minimum, or from the quadratic sum of the inverse errors (equation (7.8)).

Figure 7.2(b) shows a contour of y? = x2. + 1 (the covariance ellipse) for the first-
order polynomial (two-parameter) fit. From the inclination of the ellipse one can see that
the estimators 0y and 0, are negatively correlated. Equation 7.9 gives

b5, = (V[0o])"/* = 0.297 (7.13)
55, = (V[0i])'/* = 0.105
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Figure 7.2: (a) The x? as a function of 6y for the zero order polynomial fit shown in Fig. 7.1. The
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N

Vo = covlo, H;] = —0.0282 ,

corresponding to a correlation coefficient of » = —0.904. As in the case of maximum
likelihood, the standard deviations correspond to the tangents of the covariance ellipse,
and the correlation coefficient to its angle of inclination (see equations (6.32) and (6.33)).

7.4 Least Squares with Binned Data

In the previous examples, the function relating the “true” values A to the variable = was
not necessarily a p.d.f. for &, but an arbitrary function. It can be a p.d.f., however, or it
can be proportional to one. Suppose, for example, one has n observations of a random
variable = from which one makes a histogram with N bins. Let y; be the number of
entries in bin ¢ and f(x;8) be a hypothesized p.d.f. for which one would like to estimate
the parameter 6 (or parameters = 01,...,0,). The number of entries predicted in bin

i, Ay = Elyi], is then

A(O) = [ flai0)de = npi(0) (7.14)

n xr

where 27" are the bin limits and p;(#) is the probability to have an entry in
bin 2. The parameter ¢ is found by minimizing the quantity

and x**

yi — Xi(9))?
() = Z—( 02( ) : (7.15)
=1 7

where ¢? is the variance of the number of entries in bin 7. Note that here the function
f(x;0) is normalized to one, since it is a p.d.f., and the function that is fitted to the

histogram is A;(#).

If the mean number of entries in each bin is small compared to the total number of
entries, the contents of each bin is approximately Poisson distributed. The variance is
therefore equal to the mean (see equation (2.13)) so that equation (7.15) becomes

NOED> (i ;2(;()9))2 _ ; (yi ;pii;()a))i . (7.16)

=1

An alternative method often used to simplify matters is to approximate the variance
of the number of entries in bin ¢ by the number of entries actually observed y;, rather
than by the predicted number X;(8). This is the so-called modified least-squares method
(MLS) for which one minimizes
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X2(0) _ i\f: (yi - )‘2(0))2 _ Z (yi - an(H))z ‘ (717)

=1 Yi i=1 Yi

This may be easier to deal with computationally, but has the disadvantage that the errors
may be poorly estimated (or y? may even be undefined) if any of the bins contain few or
no entries.

When using the LS method for fitting to a histogram one should be aware of the
following potential problem. Often instead of using the observed total number of entries
n to obtain A; from equation (7.14), an additional adjustable parameter v is introduced
as a normalization factor. The predicted number of entries in bin ¢, \;(0, ) = F[y;], then
becomes

max

h

A0, v) = 1//

. fla; 0)dx = vpi(0) . (7.18)
This step would presumably be taken in order to eliminate the need to count the number
of entries n. In principle it is simple to determine n but in practice it may require
a few extra lines of programming. One can easily show, however, that introducing an
adjustable normalization parameter leads to an incorrect estimate of the total number of
entries. Consider the LS case where the variances are taken from the predicted number
of entries (o7 = );). Using equation (7.18) for A; and differentiating the resulting x* with
respect to v gives the estimator

2

IQLS =n++ X? . (719)

For the MLS case (o7 = y;) one obtains

IQMLS =n — X2 . (720)

Since one expects a contribution to y? on the order of one per bin, the relative error
in the number of entries is typically N/2n too high (LS) or N/n too low (MLS). If one
takes as a rule of thumb that each bin should have at least five entries one could have an
(unnecessary) error in the normalization of 10 — 20%.

Although the bias introduced may be smaller than the corresponding statistical error,
a result based on the average of such fits could easily be wrong by an amount larger than
the statistical error of the average. Therefore, one should determine the normalization
directly from the number of entries. If this is not practical (e.g. because of software
constraints) one should at least be aware that a potential problem exists, and the bin size
should be chosen such that the bias introduced is acceptably small.

The least squares method with binned data can be compared to the maximum
likelihood technique of Section 6.9. In that case the joint p.d.f. for the bin contents
y; was taken to be a multinomial distribution, or alternatively each y; was regarded as
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a Poisson random variable. Recall that in the latter case, where the expected total
number of entries v was treated as an adjustable parameter, the correct value o = n was
automatically found (equation (6.41)). Furthermore it has been pointed out in [Ead71]
(Section 8.4.5 and references therein) that the variances of ML estimators converge faster
to the minimum variance bound than LS or MLS estimators, giving an additional reason
to prefer the maximum likelihood method for histogram fitting.

7.5 Testing Goodness-of-Fit with \*

If the measured values y; are Gaussian, the resulting estimators coincide with the ML
estimators, as seen in Section 7.1. Furthermore, the y? value can be used as a test of how
likely it is that the hypothesis, if true, would yield the observed data.

The quantity (y; — f(x;;0))/0; is a measure of the deviation between the ith
measurement y; and the function f(z;), so x* is a measure of total agreement between
observed data and hypothesis. It can be shown (see e.g. [Fro79, Bra92]) that for the case
where

(1) they;,7s =1, N are independent Gaussian random variables with known variances, o2
(or are distributed according to an N-dimensional Gaussian with known covariance
matrix V);

(2) the hypothesis f(x;6,,...,0,) is linear in the parameters 6;,¢ = 1, m, and;

(3) the functional form of the hypothesis is correct,

then the value of y? defined by equation (7.3) (or for correlated y; by equation (7.5)) is
distributed according to the y2-distribution with N —m degrees of freedom as defined in
Section 2.6, equation (2.29).

As seen in Section 2.6, the expectation value of a random variable z from the y?*-
distribution is equal to the number of degrees of freedom. One often quotes therefore the
x? divided by the number of degrees of freedom np (the number of data points minus the
number of independent parameters) as a measure of goodness-of-fit. If it is near one, then
all is as expected. If it is much less than one, then the fit is better than expected given
the size of the measurement errors. This is not bad in the sense of providing evidence
against the hypothesis, but it is usually grounds to check that the errors o; have not been
overestimated or are not correlated.

If x*/np is much larger than one, then there is some reason to doubt the hypothesis.
As discussed in Section 4.3, one often quotes a confidence level (CL) for a given x?, which
is the probability that the hypothesis would lead to a x* value worse (i.e. greater) than
the one actually obtained. That is,

CL= /XZO flzinp)dz, (7.21)

86



where f(z;np) is the y?-distribution for np degrees of freedom. Values can be computed
numerically (with e.g. the CERN routine PROB, number G100 [CER96]) or looked up in
standard graphs or tables (e.g. references [PDG94, Bra92]). The CL at which one decides
to reject a hypothesis is subjective, but note that underestimated errors, o;, can cause a
correct hypothesis to give a bad 2.

For the polynomial fit considered in Section 7.3, one obtained for the straight-line
fit x* = 3.99 for three degrees of freedom (five data points minus two free parameters).
Computing the confidence level using equation (7.21) gives C'L = 0.263. That is, if the
true function A = f(x) were a straight line and if the experiment were repeated many
times, each time yielding values for éo, 0, and Y2, then one would expect the y? values to
be worse (i.e. higher) than the one actually obtained (x* = 3.99) in 26.3% of the cases.
This can be checked by performing a large number of Monte Carlo experiments where
the “true” parameters fy and 6; are taken from the results of the real experiment, and a
“measured” value for each data point is generated from a Gaussian of width o given by
the corresponding errors. Figure 7.3 shows a normalized histogram of the y? values from
1000 simulated experiments along with the predicted y? distribution for three degrees of
freedom.

g L I o o e e B N
\>J< 0.25 r —— x* from MC experiments ]
- f(xn,=3) ]
0.2 |
0.15
0.1 Figure 7.3: Normalized histogram
of x? values from 1000 Monte Carlo
0.05 experiments along with the predicted y?-
distribution for three degrees of freedom.
0

For the fit to the horizontal line one had y? = 45.5 for four degrees of freedom. The
corresponding confidence level is CL = 3.1 - 1072, If the horizontal-line hypothesis were
true, one would expect a x? as high as the one obtained in only three out of a billion
experiments, so this hypothesis can safely be ruled out. The advantage of the x? is that it
is not necessary to simulate a billion experiments to make a judgement about the goodness-
of-fit, since we know that as long as the data points are measurements of Gaussian random
variables, the y? value will be distributed according to the y? distribution. This is one of
the main advantages of the method of least squares over maximum likelihood, where the
value of the maximized likelihood function cannot be interpreted so directly.
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One should keep in mind the distinction between having small statistical errors and
having a good (i.e. small) Y. The statistical errors are related to the change in y? when
the parameters are varied away from their fitted values, and not to the absolute value of
x? itself. From equation (7.8) one can see that the covariance matrix depends only on
the coefficient functions h;(x) (i.e. on the composite hypothesis f(x; 5)) and on the errors
of the individual measurements o, but is independent of the measured values y;. To
demonstrate this point, consider the fit to the horizontal line done in Section 7.3, which
yielded the estimate fo = 2.665+0.127 and x? = 45.5 for four degrees of freedom. Figure
7.4 shows a set of five data points with the same = values and the same errors, Ay, but
with different y values. A fit to a horizontal line gives fo = 2.839 + 0.127 and x? = 4.48.
The error on 6 stays the same, but the y? value is now such that the horizontal-line
hypothesis provides a good description of the data. The x? vs. 0y curves for the two cases
have the same curvature, but one is simply shifted vertically with respect to the other by
a constant offset.

— R R RN RN RS
6 F — 9, =2.839 + 0.127 .
5 [ x=448 1
. ]
E + | E Figure 7.4: Least-squares fit of a zero
3 r lr 7 | ‘ ] order polynomial to data with the same x
C T ] values and errors as shown in Fig. 7.1, but
2 ; ? with different y values. Although the y?
, i j value is much smaller than in the previous
L i example, the error of 0, remains the same.
0 dl ] cl ] \
0 1 2 3 4 5 6
X

7.6 Combining Measurements with Least Squares

A special case of the method of least squares is often used to combine a number of
measurements of the same quantity. Suppose that a quantity y has been measured N times
(e.g. by N different experimental groups) yielding independent values y; and estimated
errors (standard deviations) o; for i = 1,..., N. Since one assumes that the true value is
the same for all the measurements, the value A is a constant (i.e. the function A = f(x;6)
is a constant, and thus the variable x does not actually appear in the problem). Equation

(7.3) becomes
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X = i M , (7.22)

where A plays the role of the parameter . Setting the derivative of y? with respect to A
equal to zero and solving for A gives the LS estimator A,

§ _ Zimi i/
YL 1o

which is the well-known formula for a weighted average. From the second derivative of
x* one obtains the variance of A (see equation (7.8)),

(7.23)

1
Zf\; 1/02'2 ‘

From equation (7.24) one sees that the variance of the weighted average is smaller
than any of the variances of the individual measurements. Furthermore, if one of the
measured y; has a much smaller variance than the rest, then this measurement will tend
to dominate both in the value and variance of the weighted average.

VA = (7.24)
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Chapter 8

The Method of Moments

Although the methods of maximum likelihood and least squares lead to estimators with
optimal or nearly optimal properties, they are sometimes difficult to implement. A simpler
technique for parameter estimation is the so-called method of moments (MM).

Suppose one has a set of n observations of a random variable z, zq,...,2,, and a
hypothesis for the form of the underlying p.d.f. f(x;61,...,0,,), where 6y, ..., 0, represent
m unknown parameters. The idea is to first construct m linearly independent functions
a;(x),1=1,...,m. The a;(x) are themselves random variables whose expectation values
e; = Fla;(x)] are functions of the true parameters,

Elai(x)] = /ai(x)f(x; Or,....00)de = e(0y,....0,) . (8.1)

The functions a;(#) must be chosen such that the expectation values (8.1) can be
computed, so that the functions e;(6,...,0,,) can be determined.

Since we have seen in Section 5.2 that the sample mean is an unbiased estimator
for the expectation value of a random variable, we can estimate the expectation value
e; = Ela;(x)] by the arithmetic mean of the function «;(x) evaluated with the observed
values of z,

1 e
€ =0; = g Zai(l']‘) . (82)
7=1

The MM estimators for the parameters 6y,...,0,, are defined by setting the
expectation values e;(61,...,0,,) equal to the corresponding estimators é; and solving
for the parameters. That is, one solves the following system of m equations for 8y,...,60,,:

A

(b by = % ar(z:) (8.3)

1

n

K3
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N 122
€m(01,...,0,) = —Zam(xi) )
=1

n “

Possible choices for the functions a;(z) are integer powers of the variable z: z',... ™

so that the expectation values Ela;(z)] = E[z!] are the ith algebraic moments of = (hence
the name “method of moments”). Other sets of m linearly independent functions are

Y

possible, however, as long as one can compute their expectation values and obtain m
independent functions of the parameters.

N

We would also like to estimate the covariance matrix for the estimators él, vy, In
order to obtain this we first estimate the covariance cov|a;(x), a;(x)] using equation (5.9),

covlai(x), a;(z)] = i ! Zn:(ai(xk) —@;)(a;(xr) —a;) . (8.4)

n k=1

From this it follows that the covariance cov[a;, @;] of the arithmetic means of the functions
is

R 1
COV[EZ',E]‘] = CcovV|— E ai(xk)a - E :aj(xl)
n n

= —covia;,a;]. (8.5)

The last line follows from the fact there are n terms in the sum over k£ and [ with k = [,
which each give covla;,a;]. The other n* — n terms have k # [, for which the covariance
cov[a;(xg), a;(x;)] vanishes, since the individual = values are independent. The covariance
matrix cov[é;, é;] for the estimators of the expectation values é; = @; can thus be estimated

by

IR :; ” ailrr) — ;) (a;(zy) —a;
corféi b = gy O (alee) =) (i) ) (8.6)

k=1

In order to obtain the covariance matrix COV[éZ’, é]] for the estimators of the parameters
themselves, one can then use equation (8.6) with the error propagation formula (1.52),

80; 90,

cov éz,é = — =
[ ]] k.l 8ek 861

cov|ég, €] (8.7)

Note that even though the value of each measurement x; is used (i.e. there is no
binning of the data) one does not in general exhaust all of the information about the
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form of the p.d.f. For example with a;(z) = 2',7 = 1,...,m, only information about
the first m moments of x is used, but some of the parameters may be more sensitive to
higher moments. For this reason the MM estimators have in general larger variances than
those obtained from the principles of maximum likelihood or least squares, discussed in
Chapters 6 and 7. (See e.g. [Ead71] Section 8.2.2, [Fro79] Chapters 11 and 12.) Because
of its simplicity, however, the method of moments is particularly useful if the estimation
procedure must be repeated a large number of times.

As an example consider the p.d.f. for the continuous random variable = given by

1+ ax + Bz?
x;a, 8.8
/ b= dy + ady + Bds (8:8)
with Z,in < 2 < T4 and where
b = = (2l — 2l (5.9)
n n Loz Lonin) - .

We have already encountered this p.d.f. in Section 6.8, where the parameters o and (3
were estimated using the method of maximum likelihood; here for comparison we will use
the method of moments. For this we need two linearly independent functions of x, which
should be chosen such that their expectation values can easily be computed. A rather
obvious choice is

a4 = X

ay, = 2. (8.10)

The expectation values e; = Fla;] and e; = Elay] are found to be

dy + ads 4 (dy
di + ady 4 Bds
ds + ady + (ds

= , 8.11
= di + ady 4 Bds ( )

with d, again given by equation (8.9). Solving these two equations for a and 3 and
replacing e; and e; by é; and é; gives the MM estimators,

4 - (é1d3 — d4)(é dy — ) (é dy — dz)(ézdg — d5)
(1ds — ds)(Eads — ds) — (exds — da)(éady — dy)
. (é1dy — dy)(é2dy — dy) — (E1dy — d3)(Exdy — d)
D= i ) s &) (s dy) s —dy) (8.12)
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From the example of Section 6.8 we had a data sample of 2000 x values generated
with a = 0.5, 8 = 0.5, 2,5, = —0.95, 2,4, = 0.95. Using the same data here gives

& = 0.493 £0.051

N

3 = 0.410 £0.106.

The statistical errors are obtained by means of error propagation from the covariance
matrix for é; and é;, which is estimated using equation (8.6). Similarly one obtains the
correlation coefficient r = 0.417.

These results are similar to those obtained using maximum likelihood, and the error
estimates are actually slightly smaller. The latter fact is the result, however, of a statistical
fluctuation in estimating the variances. In fact the variances of MM estimators are in
general greater than or equal to those of the ML estimators; a Monte Carlo calculation
gives for the MM case here 65 = 0.053, 65 = 0.111. This is to be compared with
65 = 0.051, 65 = 0.112 as obtained in Section 6.8 using maximum likelihood. Thus for
this particular example the statistical errors are almost the same using either method.
The method of moments has the advantage, however, that the estimates can be obtained
without having to maximize the likelihood function, which in this example (and most
others) would require a more complicated numerical calculation.
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Chapter 9

Statistical Errors, Confidence
Intervals and Limits

9.1 The Standard Deviation as Statistical Error

In Chapters 5 — 8 several methods for estimating properties of p.d.f.’s (e.g. moments,
parameters) have been discussed along with techniques for obtaining the variance of the
estimators. The variance (or equivalently its square root, the standard deviation) of an
estimator is a measure of how widely its value would be distributed if the experiment
were to be repeated many times with the same number of observations per experiment.
As such, the standard deviation o is often reported as the statistical uncertainty of a
measurement, and is referred to as the standard error.

For example, suppose one has n observations of a random variable x and a hypothesis
for the p.d.f. f(x;0) which contains an unknown parameter §. From the sample x4, ..., z,
a function é(:z;l, ..., Zy,) is constructed (using e.g. maximum likelihood) as an estimator
for §. Using one of the techniques discussed in Chapters 5 - 8 (e.g. analytic method, RCF
bound, Monte Carlo, graphical) the standard deviation of § can be estimated. Let éexp be
the value of the estimator actually obtained, and &; the estimate of its standard deviation.

In reporting the measurement of 4 as ém,p:l:&é one means that repeated estimates all based

N

on n observations of x would be distributed according to a p.d.f. g(#) centered around
some true value § and true standard deviation o;, which are estimated to be 0.,, and &;.

Although this definition of statistical error bars could in principle be used regardless
of the form of the estimator’s p.d.f. g(é), it is not, in fact, the conventional definition if
g(é) is not Gaussian. In such cases one uses confidence intervals as described in the next
section, which can in general lead to asymmetric error bars. In Section 9.3 it is shown

that if g(0) is Gaussian, then the so-called 68.3% confidence interval is the same as the
interval covered by 0., + 7;.
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9.2 Classical Confidence Intervals (Exact Method)

An alternative (and often equivalent) method of reporting the statistical error of a

measurement is with a so-called confidence interval.

Suppose as above that one has

n observations of a random variable z which can be used to evaluate an estimator
é(:z;l, ..., &,) for a parameter §, and that the value obtained is éexp. Furthermore, suppose
that based on e.g. an analytical calculation or a Monte Carlo study, one knows the p.d.f
of é, g(é; 6), which contains the true value 6 as a parameter. That is, the real value of 6
is not known, but for a given 6, one knows what the p.d.f. of 6 would be.

Figure 9.1 shows a probability density for an estimator f for a particular value of the
true parameter 6. From ¢(6;6) one can determine the value u, such that there is a fixed

probability a to observe 6 > u,, and similarly the value vg such that there is a probability

[ to observe < vg. The values u, and vg depend on the true value of 8, and are thus

defined by requiring

and

8= P(6 < v5(0))

/%(9)

9(0;0)db = G(vs(0);0)

(9.1)

(9.2)

where (7 is the cumulative distribution corresponding to the p.d.f. g(é; f).
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Figure 9.1:
parameter #. The two shaded regions
show the values of 0 < wvg, which has a
probability 3, and 9 > g, which has a
probability «.

Figure 9.2 shows an example of how the functions u,(#) and vz(#) might appear as a

function of the true value of §. The region between the two curves is called the confidence
belt. The probability for the estimator to be inside the belt, regardless of the value of 6,

is given by

Plos(0) <0 < u,(0)) = 1
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As long as u,(8) and vg(#) are monotonically increasing functions of 6, which in
general should be the case if § is to be a good estimator for 6, one can determine the
inverse functions

a é =t é ,
) =0 o
b(h) = vﬁ_l(ﬁ)
The inequalities
0> u.(0 ,
. ®) (9.5)
0 < vs(0),
then imply respectively
a(f) > 0,
(A) N (9.6)
b(h) < 6.
Equations (9.1) and (9.2) thus become
Pla(f) > 0) = a,
i) = 0 o
P(b(d) <0) =5,
or taken together,
Pla(0) <0 <bl)=1—a—3. (9.8)



If the functions a(é) and b(é) are evaluated with the value of the estimator actually
obtained in the experiment, éexp, then this determines two values, a and b, as illustrated
in Fig. 9.2. The interval [a,b] is called a confidence interval at a confidence level' of
I — o — 3. The idea behind its construction is that equations (9.7), and hence also
(9.8), hold regardless of the true value of 6, which, of course, is unknown. It should
be emphasized that a and b are random values, since they depend on the estimator é,
which is itself a function of the data. If the experiment were repeated many times, the
interval [a,b] would include the true value of the parameter § in a fraction 1 —a — 3 of
the experiments.

In some situations one may only be interested in a one-sided confidence interval or
limit. That is, the value a represents a lower limit on the parameter # such that a« < 6 with
the probability 1 —a. Similarly, b represents an upper limit on 6 such that P(6 <b) = 1—7.

Two-sided intervals (i.e. both a and b specified), are not uniquely determined by the
confidence level 1 —a — 3. One often chooses, for example, @ = 3 = /2 giving a so-called
central confidence interval with probability 1 —~. Note that a central confidence interval
does not necessarily mean that a and b are equidistant from the estimated value é, but
only that the probabilities a and 3 are equal.

By construction the value @ gives the (hypothetical) value of the true parameter 4 for
which a fraction « of repeated estimates 0 would be higher than the one actually obtained,
émp, as 1s illustrated in Fig. 9.3. Similarly, b is the value of § for which a fraction 3 of the
estimates would be lower than éexp. That is, taking éexp = uq(a) = vg(b), equations (9.1)
and (9.2) become

a = AOO g(é, a) df =1 — G(éexp, a,
eemp
ée.rp A A A
5 = / g(0:b)db = G(D.,,:b) . (9.9)

The previously described procedure to determine the confidence interval is thus equivalent
to solving (9.9) for a and b, e.g. numerically.

The confidence interval [a b] is often expressed by reporting the result of a
measurement as (9"'?, where 6 is the estimated value, and ¢ = 6§ — a and d = b — 8 are
usually displayed as error bars. In many cases the p.d.f. g(@, f) is approximately Gaussian,
so that an interval of plus or minus one standard deviation around the measured value
corresponds to a central confidence interval with 1 — + = 0.683 (see Section 9.3). The
68.3% central confidence interval is usually adopted as the conventional definition for error
bars even when the p.d.f. of the estimator is not Gaussian.

If, for example, the result of an experiment is reported as é"_’f = 5.797052, it is meant

that if one were to construct the interval [é—c, é—l—d] according to the prescription described

!This should not be confused with the confidence level of a goodness-of-fit test (see Section 4.3).
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above in a large number of similar experiments with the same number of measurements
per experiment, then the interval would include the true value # in 1 — a — § of the cases.
It does not mean that the probability (defined in the sense of limiting relative frequency)
that the true value of 4 is in the fixed interval [5.54,6.11] is 1 — a — . In the limiting
frequency interpretation, the true parameter # is not a random variable and is assumed
to not fluctuate from experiment to experiment. In this sense the probability that 6 is
in [5.54,6.11] is either 0 or 1, but we do not know which. The interval itself, however, is

subject to fluctuations since it is constructed from the data.

A difficulty in constructing confidence intervals is that the p.d.f. of the estimator
g(é; f), or equivalently the cumulative distribution G(é; ), must be known. An example
is given in Section 10.2, where the p.d.f. for the estimator of the mean £ of an exponential
distribution is derived, and from this a confidence interval for ¢ is determined. In many
practical applications, estimators are Gaussian distributed (at least approximately). In
this case the confidence interval can be determined easily; this is treated in detail in the
next section. Even in the case of a non-Gaussian estimator, however, a simple approximate
technique can be applied using the likelihood function; this is described in Section 9.6.
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9.3 Confidence Interval for Gaussian Distributed
Estimator

A simple and very important application of a confidence interval is when the distribution of
0 is Gaussian with mean ¢ and standard deviation o;. That is, the cumulative distribution

of 0 is

R b —(0 = 9)2\ .
G(0;0,04) = / ! exp (%) o’ . (9.10)

—o0  [2mOo% o5

E

This is a commonly occurring situation since, according to the Central Limit theorem,
any estimator that is a linear function of a sum of random variables becomes Gaussian
in the large sample limit. We will see that for this case, the somewhat complicated
procedure explained in the previous section results in a particularly simple prescription
for determining the confidence interval.

Suppose that the standard deviation o, is known, and that the experiment has resulted

in an estimate éexp for 0. According to equations (9.9), the confidence interval [a,b] is
determined by solving the equations

A éel’ -
a = 1—G(06xp;a,aé):1—q)(p7a),

A éel’ _b
5 - G(em;b,aé):@( : ) (9.11)

T4

for a and b, where (G has been expressed using the cumulative distribution of the standard

Gaussian ¢ (2.24) (see also (2.25)). This gives

a = éexp —0; 07 (1 —a),

(9.12)
b= 0+ 0,0 (1— 3).

Here ®~! is the inverse function of @, i.e. the quantile of the standard Gaussian, and in
order to make the two equations symmetric we have used ®~1(38) = —®~'(1 — j3).

The quantiles ®~*(1 — ) and ®~!(1 — 3) represent how far away the interval limits
a and b are located with respect to the estimate éexp in units of the standard deviation
os. The relationship between the quantiles of the standard Gaussian distribution and
the confidence level is illustrated in Fig. 9.4(a) for central and Fig. 9.4(b) for one-sided
confidence intervals.

Consider a central confidence interval with a = 3 = v/2. The confidence level 1 —~ is
often chosen such that the quantile is a small integer, e.g. ®~1(1 — v/2) = 1,2,3,....
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Similarly, for one-sided intervals (i.e. limits) one often chooses a small integer for
®~!(1 — ). Commonly used values for both central and one-sided intervals are shown in
Table 9.1. Alternatively one can choose a round number for the confidence level instead
of for the quantile. Commonly used values are shown in Table 9.2. Other possible values
can be obtained from [Bra92, Fro79, Dud88] or from computer routines (e.g. [CER96],
routine G105).

Quantile of Confidence level for Quantile of Confidence level for
standard Gaussian central interval standard Gaussian | one-sided interval
o111 —~/2) 1—x 11 —a) l—a
1 0.6827 1 0.8413
2 0.9544 2 0.9772
3 0.9974 3 0.9987

Table 9.1: The values of the confidence level for different values of the quantile ®~' for central and
one-sided confidence intervals. The relationship between the quantile and confidence level is illustrated
in Fig. 9.4.

For the 68.3% central confidence interval one has o = 8 = /2, with ®~(1—~/2) =1,
i.e. a “1 o error bar”. This results in the simple prescription,

N N

[av b] = [eexp — 0p, ‘gexp + Ué] . (9.13)
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Confidence level for Quantile of Confidence level for Quantile of
for central interval | standard Gaussian || one-sided interval | standard Gaussian
1— O~H1 —~/2) l—a 11— a)
0.90 1.645 0.90 1.282
0.95 1.960 0.95 1.645
0.99 2.576 0.99 2.326

Table 9.2: The values of the quantile ®~' for different values of the confidence level for central and
one-sided confidence intervals. The relationship between the quantile and confidence level is illustrated
in Fig. 9.4.

Thus for the case of a Gaussian distributed estimator, the 68.3% central confidence interval
is given by the estimated value plus or minus one standard deviation. The final result of

N

the measurement of § is then simply reported as 0.,, £ 7.

If the standard deviation o, is not known a priori but rather is estimated from the
data, then the situation is in principle somewhat more complicated. If, for example, the
estimated standard deviation &; had been used instead of oy, then it would not have been
so simple to relate the cumulative distribution G(é; 0,56;) to @, the cumulative distribution
of the standard Gaussian, since &; depends in general on 0. In practice, however, the recipe
given above can still be applied using the estimate 6; instead of o4, as long as 0; is a
sufficiently good approximation of the true standard deviation, e.g. in the large sample
limit.2

Exact determination of confidence intervals becomes more difficult if the p.d.f. of the
estimator g(é; 6) is not Gaussian, or worse, if it is not known analytically. For a non-
Gaussian p.d.f. it is sometimes possible to transform the parameter § — 7(6) such that
p.d.f. for the estimator 7 is approximately Gaussian. The confidence interval for the
transformed parameter n can then be converted back into an interval for §. An example
of this technique is given in Section 9.5.

9.4 Confidence Interval for the Mean of the Poisson
Distribution

Along with the Gaussian distributed estimator, another commonly occurring case is where
the outcome of a measurement is a Poisson variable &, with £ = 0,1,2,.... Recall from
(2.11) that the probability to observe k is

N

HGRIE ¢ (9.14)

?For the small sample case where 4 represents the mean of n Gaussian random variables of unknown
standard deviation, the confidence interval can be determined by relating the cumulative distribution
G(0;0,064) to Student’s ¢-distribution; see e.g. [Fro79], [Dud88] Section 10.2.
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and that the parameter X is equal to the expectation value K[k]. The maximum-likelihood
estimator for A can easily be found to be A= k. Suppose a single measurement has resulted
in the value 5\617, = keyp, and based on this one would like to construct a confidence interval
for the mean .

For the case of a discrete variable, the procedure for determining the confidence interval
described in Section 9.2 cannot be directly applied. This is because the quantities that
determine the confidence belt, u,(8) and vz(8), do not exist for all values of the parameter
f. For the Poisson case, for example, we would need to find u,(X) and vg(A) such that
P(j\ > us(A)) = a and P(j\ < wg(A)) = B for arbitrary o and 3 and for all values of the

parameter A. But if @ and (3 are fixed, then because A only takes on discrete values, these
equations hold in general only for particular values of A.

A confidence interval [a, b] can still be determined, however, by using equations (9.9).
For the case of a discrete random variable and a parameter A these become

o = P(S\ > j\exp;a),
B = P\ < Ap;b), (9.15)

and in particular for a Poisson variable one has

0 keap—1 keap—1 [k
e a
a = 2 Jka)=1= 3> [lka)=1-e" > .
k=kezp k=0 k=0 :
ke.rp ke-’ﬁp bk
(I V(U sy (9.16)
k=0 k=0 "

For any estimate A = kes, and given probabilities o and 3 these equations can be
solved numerically for @ and b. Note that the lower limit ¢ cannot be determined if
kerp = 0. Equations (9.15) say that if A = a (A = b), then the probability is a (3) to
observe a value greater (less) than or equal to the one actually observed. The fact that
Eesp 1s included in the inequalities leads to a conservatively large confidence interval, i.e.

PA>a) > 1 -«
PA<b) > 1-p
Pla <X < > l—a—03. (9.17)

An important special case is when the observed number k., is zero, and one is
interested in establishing an upper limit b. Equation (9.15) becomes
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0 bk e—b

p=y = (9.18)
k=0 .

or b = —logB3. For the upper limit at a confidence level of 1 — 3 = 95% one has
b= —1og(0.05) =2.996 ~ 3. Thus if the number of occurrences of some rare event is
treated as a Poisson variable with mean A, and one looks for events of this type and finds
none, then the 95% upper limit on the mean is 3. That is, if the mean were in fact A = 3,
then the probability to observe zero would be 5%.

9.5 Confidence Interval for Correlation Coefficient,
Transformation of Parameters

In many situations one can assume that the p.d.f. for an estimator is Gaussian, and thus
use the results of the previous section to obtain a confidence interval. As an example
where this is often not the case, consider the correlation coefficient p of two continuous
random variables x and y distributed according to a two-dimensional Gaussian p.d.f.
f(z,y) (equation (2.28)). Suppose we have a sample of n independent observations of
and y, and we would like to determine a confidence interval for p based on the estimator

r (5.10)

ilwi — )y —9) _ (9.19)
(S (s = 7 Sy (= 77)

T =

The p.d.f. g(r;p,n) has a rather complicated form; it is given e.g. in [Mui82] p. 151.
A graph is shown in Fig. 9.5 for a sample of size n = 20 for several values of the true
correlation coefficient p. One can see that g(r;p,n) is asymmetric and that the degree of
asymmetry depends on p. It can be shown that g(r;p,n) approaches a Gaussian in the
large sample limit, but for this approximation to be valid, one requires fairly large sample.
(At least n > 500 is recommended [Bra92].) For smaller samples such as in Fig. 9.5, one
cannot rely on the Gaussian approximation for g(r; p,n), and thus one cannot use (9.12)
to determine the confidence interval.

In principle one is then forced to return to the procedure of Section 9.2, which in
this case would be quite difficult computationally. There exists, however, a much simpler
method to determine an approximate confidence interval for p. It has been shown by
Fisher that the p.d.f. of the statistic

14+
1—r

1
z =tanh™'r = 5 log (9.20)

approaches the Gaussian limit much more quickly as a function of the sample size n than

that of r (see [Fis90] and references therein). This can be used as an estimator for ,

defined as
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1
¢ =tanh™'p = 5 log T, (9.21)
One can show that the expectation value of z is approximately given by

Lo 14p P

Elz]==1 9.22
and its variance by
Vi = — (9.23)
z] = : :
n—3

We will assume that the sample is large enough that z has a Gaussian p.d.f. and that the
bias term p/2(n — 1) in (9.22) can be neglected. Given a sample of n measurements of
and y, z can be determined according to equation (9.20) and its standard deviation &, can
be estimated by using the variance from equation (9.23). One can use these to determine
the interval [z — 0.,z + &.], or in general the interval [a,b] given by (9.12). These give
the lower limit a for ¢ with confidence level 1 — & and an upper limit b with confidence
level 1 — 3. The confidence interval [a,b] for ( = tanh™'p can then be converted back
to an interval [A, B] for p simply by using the inverse of the transformation (9.20), i.e.
A = tanha and B = tanhb.

Consider for example a sample of size n = 20 for which one has obtained the
estimate r = 0.5. From equation (5.13) the standard deviation of r can be estimated
as 6, = (1 —r?)/y/n = 0.168. If one were to make the incorrect approximation that
r is Gaussian distributed for such a small sample, this would lead to a 68.3% central

confidence interval for p of [0.332,0.668], or [0.067,0.933] at a confidence level of 99%.
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Thus since the sample correlation coefficient r is almost three times the standard error
&,, one might be led to the incorrect conclusion that there is significant evidence for a
non-zero value of p, i.e. a “3 o effect”. By using the Fisher z-transformation, however, one
obtains z = 0.549 and &, = 0.243. This corresponds to a 99% central confidence interval
of [—.075,1.174] for (, and [—.075,0.826] for p. Thus the 99% central confidence interval

includes zero.

Recall that the lower limit of the confidence interval is equal to the hypothetical value
of the true parameter such that r would be observed higher than the one actually observed
with the probability a. One can ask, for example, what the confidence level would be for
a lower limit of zero. If we had assumed that ¢(r;p,n) was Gaussian, the corresponding
probability would be 0.14%. By using the z-transformation, however, the confidence level
for a limit of zero is 2.3%), i.e. if p were zero one would obtain r greater than or equal to
the one observed, r = 0.5, with a probability of 2.3%. The actual evidence for a non-zero
correlation is therefore not nearly as strong as one would have concluded by simply using
the standard error 6, with the assumption that r is Gaussian.

9.6 Confidence Intervals Using the Likelihood
Function or y”

Even in the case of a non-Gaussian estimator, the confidence interval can be determined
with a simple approximate technique which makes use of the likelihood function (or
equivalently the y? function where one has L = exp(—x?/2)). Consider first a maximum-
likelihood estimator d for a parameter 6 in the large sample limit. In this limit it can be
shown that the p.d.f. g(é; ) becomes Gaussian,

o(0:0) = — exp(ﬂ), (9.24)

2
2mo? 2%

K

centered about the true value of the parameter 6 and with a standard deviation oy.

Also in the large sample limit, one can show that the likelihood function itself becomes
Gaussian in form centered about the ML estimate 8,

L(0) = Lypaw exp (M) . (9.25)

2
20@

From the RCF inequality (6.17), which for an ML estimator in the large sample limit
becomes an equality, one obtains that o in the likelihood function (9.25) is the same as
in the p.d.f. (9.24). This has already been encountered in Section 6.7, equation (6.25),
where the likelihood function was used to estimate the variance of an estimator 6. This
led to a simple prescription for estimating oy, since by changing the parameter § by N
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standard deviations, the log-likelihood function decreases by N?/2 from its maximum
value,

2

log L(é + NU@) == 10g Lmaac - 5

> (9.26)

From the results of the previous section, however, we know that for a Gaussian
distributed estimator § the 68.3% central confidence interval can be constructed from
the estimator and its estimated standard deviation &; as [a,b] = [0 — o, 0+ 4], (or more
generally according to (9.12) for a confidence level of 1 —~). The 68.3% central confidence
interval is thus given by the values of § at which the log-likelihood function decreases by
1/2 from its maximum value. (This is assuming, of course, that 0 is the ML estimator
and thus corresponds to the maximum of the likelihood function.)

In fact, it can be shown that even if the likelihood function is not a Gaussian function
of the parameters, the central confidence interval [a,b] = [0 — ¢,0 + d] can still be
approximated by using

N N2
log L(01) = log Lyas — - (9.27)
where N = ®~!(1 — ~/2) is the quantile of the standard Gaussian corresponding to the
desired confidence level 1 — 5. (For example, N = 1 for a 68.3% central confidence
interval; see Table 9.1.) In the case of a least-squares fit with Gaussian errors, i.e. with
log L = —x?/2, the prescription becomes

O =\, + N2 (9.28)

A heuristic proof that the intervals defined by equations (9.27) and (9.28) approximate
the classical confidence intervals of Section 9.2 is given in [Ead71, Fro79]. Equations (9.27)
and (9.28) represent one of the most commonly used methods for estimating statistical
uncertainties. One should keep in mind, however, that the correspondence with the
method of Section 9.2 is only exact in the large sample limit. Several authors (e.g.
[Fro79, Hud64]) have recommended using the term “likelihood interval” for an interval
obtained from the likelihood function. Regardless of the name, it should be kept in mind
that it is interpreted here as an approximation to the classical confidence interval, i.e.
a random interval constructed so as to include the true parameter value with a given

probability.

As an example consider the estimator 7 = L 3°7 ¢ for the parameter 7 of an
exponential distribution, as in the example of Section 6.2 (see also Section 6.7). There,
the maximum-likelihood method was used to estimate 7 given a sample of n = 50

measurements of an exponentially distributed random variable ¢. This sample was
sufficiently large that the standard deviation o; could be approximated by the values
of 7 where the log-likelihood function decreased by 1/2 from its maximum (see Fig. 6.4).
This gave 7 = 1.06 and 6; =~ A7_ ~ A7, ~ 0.15.
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Figure 9.6 shows the log-likelihood function log L(7) as a function of 7 for a sample
of only n = 5 measurements of an exponentially distributed random variable, generated
using the Monte Carlo method with the true parameter 7 = 1. Because of the smaller
sample size the log-likelihood function is less parabolic than before.

Figure 9.6: Log-likelihood function
log L(r) as a function of 7 for

sample of n = 5 measurements. The

interval [f— A7_ 74+ A7y] determined by
log L(7) = log Limaz — 1/2 can be used to

approximate the 68.3% central confidence

interval.

One could still use the half-width of the interval determined by log L. — 1/2 to
approximate the standard deviation o3, but this is not really what we want. The statistical
uncertainty is better communicated by giving the confidence interval, since one then knows
the probability that the interval covers the true parameter value. Furthermore, by giving
a central confidence interval (and hence asymmetric errors, A7_ # A7), one has equal
probabilities for the true parameter to be higher or lower than the interval limits. As
illustrated in Fig. 9.6, the central confidence interval can be approximated by the values
of 7 where log L(7) = log L. — 1/2, which gives [T — A7_,7 + A7y] = [0.55,1.37] or
7 = 0.8545:30.

In fact, the same could have been done in Section 6.7 by giving the result there
as 7 = 1.062%5152. Whether one chooses this method or simply reports an averaged
symmetric error (i.e. 7 = 1.06 £+ 0.15) will depend on how accurately the statistical error
needs to be given. For the case of n = 5 shown in Fig. 9.6, the error bars are sufficiently
asymmetric that one would probably want to use the 68.3% central confidence interval

and give the result as 7 = 0.857032.

9.7 Multidimensional Confidence Regions

In Section 9.2, a confidence interval [a,b] was constructed so as to have a certain
probability 1 — ~ of containing a parameter §. In order to generalize this to the case
of n parameters, § = (64,...,0,), one might attempt to find an n-dimensional confidence
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interval [d@, b] constructed so as to have a given probability that a; < 0; < b;, simultaneously
for all 7. This turns out to be computationally difficult, and is rarely done.

It is nevertheless quite simple to construct a confidence region in the parameter space
such that the true parameter 0 is contained within the region with a given probability
(at least approximately). This region will not have the form a; < 6; < b;, ¢+ = 1,...,n,
but will be more complicated, approaching an n-dimensional hyperellipsoid in the large
sample limit.

As in the single parameter case, one makes use of the fact that both the joint p.d.f.
for the estimator § = (él, cees én) as well as the likelihood function become Gaussian in
the large sample limit. That is, the joint p.d.f. of 0 becomes

> 1

9(§|9) = Gy exp [_EQ@ ﬁ)] ; (9.29)

2
where () is defined as

)= (60— 8TV — ). (9.30)

>
)

Q(

Here V~! is the inverse covariance matrix and the superscript 7' indicates a transposed
— —

Y

(i.e. row) vector. Contours of constant g(é|5) correspond to constant Q(é, 5) These are
ellipses (or for more than two dimensions, hyperellipsoids) in é—space centered about the

true parameters g, Figure 9.7(a) shows a contour of constant Q(é), where 0y, represents
a particular value of 0.

—

Also as in the one-dimensional case, one can show that the likelihood function L(8)

—
~

takes on a Gaussian form centered about the ML estimators 6,

L(0) = Lyazexp |— (5— g)TV_l(g— 5)] = Lar€xp [—— Q(@_)7 5)] ) (9.31)

1
2

The inverse covariance matrix V! is the same here as in (9.29); this can be seen from the
RCF inequality (6.20) and using the fact that the ML estimators attain the RCF bound
in the large sample limit. The quantity () here is regarded as a function of the parameters

§ which has its maximum at the estimates §. This is shown in Fig. 9.7(b) for 0 equal

to a particular value éexp. Because of the symmetry between 0 and 0 in the definition
(9.30), the quantities ) have the same value in both the p.d.f. (9.29) and in the likelihood

function (9.31), i.e. Q(é,g) = Q(@jé)

As discussed in Section 7.5, it can be shown that if § is described by an n-dimensional
Gaussian p.d.f. g(é, 5), then the quantity Q(é, 5) is distributed according to a y?*-

distribution for n degrees of freedom. The statement that Q(é,g) is less than some
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Figure 9.7: (a) A contour of constant g(é;@rue) (i.e. constant Q(é,@me)) in é—space. b) A contour

(
;

of constant L(@) corresponding to constant Q(éexp,g) in 67—space. The values @me and f..p represent

particular (i.e. constant) values of g and é, respectively

value ()., 1.e. that the estimate is within a certain distance of the true value 5, implies

Q(@_)7 é) < (), l.e. that the true value 0 is within the same distance of the estimate. The
two events therefore have the same probability,

>

QLD < @) = [ (s, (9.32)

where f(z;n) is the x? distribution for n degrees of freedom (equation (2.29)). The value
() 1s chosen to correspond to a given probability content,

Qy
/ flzin)dz=1—~. (9.33)
0
That is,

Qy=F"(1—-vn) (9-34)

is the quantile of order 1 — ~ of the y?-distribution. The region of g—space defined by

Q(@_)7 é) < Q) is called a confidence region with the confidence level 1 —~. For a likelihood

function of Gaussian form (9.31) it can be constructed by finding the values of 0 at which
the log-likelihood function decreases by @).,/2 from its maximum value,

log L(0) = log Lyes — % : (9.35)
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As in the single parameter case, one can still use the prescription given by (9.35) even if
the likelihood function is not Gaussian, in which case the probability statement (9.32) is
only approximate. For an increasing number of parameters, the approach to the Gaussian
limit becomes slower as a function of the sample size, and furthermore it is difficult to
quantify when a sample is large enough for (9.32) to apply. If needed, one can determine
the probability that a region constructed according to (9.35) includes the true parameter
by means of a Monte Carlo calculation.

Quantiles of the y*distribution Q. = f~(1 —~;n) for several confidence levels 1 — v
and n = 1,2,3,4,5 parameters are given in Table 9.3. Values of the confidence level are
given for various values of the quantile (), are given in Table 9.4.

1_
Q, 1

n=1|n=2|n=3|n=4|n=>5
1.0 | 0.683 | 0.394 | 0.199 | 0.090 | 0.037
2.0 0.843 | 0.632 | 0.427 | 0.264 | 0.151
4.0 | 0.955 | 0.865 | 0.739 | 0.594 | 0.451
9.0 | 0.997 | 0.989 | 0.971 | 0.939 | 0.891

Table 9.3: The values of the confidence level 1 — ~ for different values of Qy and for n = 1,2,3,4,5
fitted parameters.

Qy

I=7 n=1|n=2|n=3|n=4|n=>5
0.683 | 1.00 2.30 3.93 4.72 5.89
0.90 2.71 4.61 6.25 7.78 9.24
0.95 3.84 5.99 7.82 9.49 11.1
0.99 6.64 9.21 11.3 13.3 15.1

Table 9.4: The values of the quantile Q) for different values of the confidence level 1—v forn =1,2,3,4,5
fitted parameters.

For n =1 the expression (9.34) for (), can be shown to imply

VO, =7 (1= 7/2), (9.36)

where ®~! is the inverse function of the standard normal distribution. The procedure
here thus reduces to that for a single parameter given in Section 9.6, where N = \/@ is
the half width of the interval in standard deviations (see equations (9.26), (9.27)). The
values for n = 1 in Tables 9.3 and 9.4 are thus related to those in Tables 9.1 and 9.2 by
equation (9.36).

For increasing n, the confidence level for a given (), decreases. For example, in the

single parameter case, (), = 1 corresponds to 1 —~ = 0.683. For n =2, (), = 1 gives a
confidence level of only 0.394, and in order to obtain 1 — v = 0.683 one needs ()., = 2.30.
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We should emphasize that, as in the single parameter case, the confidence region
Q(@_)7 é) < (), is a random region in 5—space. The confidence region varies upon repetition

of the experiment, since # is a random variable. The true parameters, on the other hand,
are unknown constants.

9.8 Bayesian Intervals

An alternative approach to quantifying statistical uncertainty is by use of subjective
probability as introduced in Section 1.2. Here both the result of a measurement = and a
parameter @ are treated as random variables. One’s knowledge about # is summarized by
its probability density p(#) which gives the degree of belief that 8 has a given value.

Consider again the situation above with n observations of a random variable x,
T1,...,%,, assumed to be distributed according to some p.d.f. f(x;6) which depends
on an unknown parameter §. (The Bayesian approach can easily be generalized to several

parameters 0= (01,...,0,). For simplicity we will consider here only a single parameter.)
Recall that the likelihood function is the joint p.d.f. for the data ¥ = (ay,...,x,) for a
given value of 6, and thus can be written

n

L(Z|0) = H flzi;0) . (9.37)

=1

What we would like is the conditional p.d.f. for 8 given the data p(#|Z). This is obtained
from the likelihood via Bayes’ theorem (equation (1.25))

L(7]0) 7(0)
[L(Z|0") 7 (0")do"

p(0]7) = (9.38)

where 7(6) is the prior probability density for 6, reflecting the state of knowledge of 6
before consideration of the data. p(8|Z) is called the posterior probability density for 6
given the data 7.

In Bayesian statistics all information about @ is contained in the posterior p.d.f. p(6|¥).
Since it is rarely practical to report the entire p.d.f., especially when € is multidimensional,
an appropriate way of summarizing it must be found. The first step in this direction is
an estimator, which clearly should be the value of # at which p(#|¥) is a maximum. In
practice Bayesian estimators are not used much in the physical sciences, with the classical
methods of maximum likelihood and least squares being more widely accepted. Note,
however, that if the prior p.d.f. 7(6) is taken to be a constant, then p(6|Z) is proportional
to the likelihood function L(Z|f) and the Bayesian and ML estimators coincide. As long
as m(0) is relatively flat compared to L(Z]#), this statement still holds approximately.
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In addition to giving an estimator of the single most probable value of 8, the
posterior density® p(f) can be summarized by giving an interval [a,b] such that for given
probabilities @ and 3 one has

a

a = / (0]7) d

— 00

5 = Ampwwyw. (9.39)

Choosing a = (3 then gives a central interval, with e.g. 1 — a — 3 = 68.3%. Another
possibility is to choose a and 3 such that all values of p(6) inside the interval [a,b] are
higher than any values outside, which implies p(a) = p(b). One can easily show that this
gives the shortest possible interval.

The Bayesian approach expressed by equation (9.38) gives a method for updating one’s
state of knowledge in light of newly acquired data. To do this, however, one must specify
what the state of knowledge was before the measurement via the prior density 7(8). If
nothing is known previously, one may assume that all values of § are equally likely. This
assumption is sometimes called Bayes’ postulate, expressed here by 7(6) = constant. If the
range of 6 is infinite then a constant 7(#) cannot be normalized, and is called an improper
prior. This is usually not, in fact, a problem since () always appears multiplied by the
likelihood function, resulting in a normalizable posterior p.d.f. For some improper prior
densities this may not always be the case; see e.g. equation (9.44) in the next section.

In cases where # can only take on discrete values, the use of Bayes’ postulate is
unambiguously defined. If # is continuous, however, the situation is more difficult.
Suppose one has a continuous parameter 6 defined in the interval [0,10]. One would
then take the prior p.d.f. my(#) = 0.1 in equation (9.38) to get the posterior density pg(6).
Another experimenter, however, could decide that some nonlinear function a(#) was more
appropriate as the parameter. Using the techniques for transformation of variables, one
could find the corresponding density p,(a) = ps(8)|df/da|. On the other hand, one could
express the likelihood function directly in terms of a, and assume that the prior density
m.(a) is constant. For example, if @ = 62, then 7,(a) = 0.01 in the interval [0, 100]. Using
this in equation (9.38), however, would lead to a posterior density in general different
from the p,(a) obtained by transformation of variables. That is, complete ignorance
about 0 (my(#) = constant) implies a nonuniform prior density for a nonlinear function of
0 (my(a) # constant).

An important case where Bayesian intervals have proven useful is when one has
objective prior information about the value of a parameter, such as a physical boundary.
With classical confidence intervals there is no easy way of incorporating such information,
whereas this is straightforward when using the Bayesian approach. This situation is
treated in the next section.

3In some cases we will suppress reference to the data # in the posterior p.d.f. and simply write p(6).
The conditional probability for & given & is implied.
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9.9 Limits Near a Physical Boundary

Often the purpose of an experiment is to search for a new effect, the existence of which
would imply that a certain parameter is not equal to zero. For example, one could attempt
to measure the mass of the neutrino, which in the standard theory is massless. If the data
yield a value of the parameter significantly different from zero, then the new effect has
been discovered, and the parameter’s value and a confidence interval to reflect its error
are given as the result. If, on the other hand, the data result in a fitted value of the
parameter that is consistent with zero, then the result of the experiment is reported by
giving an upper limit on the parameter. (A similar situation occurs when absence of the
new effect corresponds to a parameter being large or infinite; one then places a lower
limit. For simplicity we will consider here only upper limits.)

If there are no restrictions on the possible values of the parameter, then the classical
and Bayesian techniques described in the previous sections will lead to similar (or
identical) results, albeit with differences in their interpretation. A significant difference
in the two approaches becomes evident, however, if the parameter is only allowed to take
on values in a restricted range. In particle physics, for example, this is the case with the
neutrino mass mentioned above and with quantities such as cross sections and particle
lifetimes, the true values of which must be positive (or zero) by definition.

The difficulty arises when an estimator can take on values in the excluded region. This
can occur if the estimator 0 for a parameter 6 is of the form 0=a— y, where both x and
y are random variables, i.e. they have random measurement errors. The mass squared of
a particle, for example, can be estimated by measuring independently its energy F and
momentum p, and using m? = E? — p?. Although the mass squared should ‘come out
positive, measurement errors in £? and p? could result in a negative value for m?2. Then
the question is how to place a limit on m?, or more generally on a parameter § when the
estimate is in or near an excluded region.

Consider further the example of an estimator 0=a— y where x and y are Gaussian

variables with means i, p, and variances ¢, o7. One can show that the difference

0=x— y is also a Gaussian variable with § = p, — p,, and 002 = 02+ 0;. (This can easily
be shown using characteristic functions as described in Chapter 11.)

Assume that 6 is known a priori to be non-negative (e.g. like the mass squared), and
suppose the experiment has resulted in a value 0.,, for the estimator . According to
(9.12), the upper limit 8, at a confidence level 1 — 3 is

Oup = Ocap + 0,0 (1 = 3) . (9.40)

For the commonly used 95% confidence level one has from Table 9.2 ®~!(0.95) = 1.645.

The interval (—oo,8,,] is constructed to include the true value 6 with a probability of
95%), regardless what 6 actually is. Suppose now that the standard deviation is o5 = 1, and
one obtalns éexp = —2.0. From equation (9.40) one obtains §,, = —0.355 at a confidence
level of 95%. Not only is éexp in the forbidden region (as half of the estimates should be
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if 6 is really zero) but the upper limit, i.e. the entire confidence interval, is below zero
as well. This is not particularly unusual, and in fact is expected to happen in 5% of the
experiments if the true value of 4 is zero.

As far as the definition of the confidence interval is concerned, nothing fundamental
has gone wrong. The interval was designed to cover the true value of # in a certain fraction
of repeated experiments, and we have obviously obtained one of those experiments where
6 is not in the interval. But this is not a very satisfying result, since it was already known
a priori that 0 is greater than zero (and certainly greater than 6,, = —0.355) without
having to perform the experiment.

Regardless of the upper limit, it is important to report the actual value of the estimate
obtained and its standard deviation, i.e. éexp +0,, even if the estimate is in the physically
excluded region. In this way, the average of many experiments (e.g. as in Section 7.6)
will converge to the correct value (as long as the estimator is unbiased). In cases where
the p.d.f. of 0 is significantly non-Gaussian, the entire likelihood function L(#) should be
given, which can be combined with that of other experiments as discussed in Section 6.11.

Nevertheless, most experimenters want to report some sort of upper limit, and in
situations such as the one described above a number of techniques have been proposed
(see e.g. [Hig83, Jam91]). There is unfortunately no established convention on how this
should be done, and one should therefore state what procedure was used.

As a solution to the difficulties posed by an upper limit in an unphysical region, one
might be tempted to simply increase the confidence level until the limit enters the allowed
region. In the previous example, if we had taken a confidence level 1 — 3 = 0.99, then
from Table 9.2 one has ®71(0.99) = 2.326, giving 6,, = 0.326. This would lead one
to quote an upper limit that is smaller than the intrinsic resolution of the experiment
(05 = 1) at a very high confidence level of 99%, which is clearly misleading. Worse, of
course, would be to adjust the confidence level to give an arbitrarily small limit, e.g.

®=1(0.97725) = 2.00001, or 8,, = 107" at a confidence level of 97.725%)!

In order to avoid this type of difficulty, a commonly used technique is to simply shift
a negative estimate to zero before applying equation (9.40), i.e.

0.up = max(f.pp, 0) + 0 (1 = 3) . (9.41)

In this way the upper limit is always at least the same order of magnitude as resolution of
the experiment. If éexp is positive, the limit coincides with that of the classical procedure.
This technique has a certain intuitive appeal and is often used, but the interpretation
as an interval that will cover the true parameter value with probability 1 — 3 no longer
applies. The coverage probability is clearly greater than 1 — 3, since the shifted upper
limit (9.41) is in all cases greater than or equal to the classical one (9.40).

Another alternative is to report a Bayesian upper limit as discussed in Section 9.8.
Here one has the advantage that prior knowledge, e.g. § > 0, can easily be incorporated
by setting the prior p.d.f. () to zero in the excluded region. Bayes’ theorem then gives

115



a posterior probability p(#) with p(6) = 0 for § < 0. The upper limit is thus determined
by

fy () w(0) db
T LO) 7 (0)do

The difficulties here have already been mentioned in Section 9.8, namely, that there

|- §= /Oeup p(0)do (9.42)

is no unique way to specify the prior density (). A common choice is

0 0<0
m(0) = { L8>0 (9.43)

The prescription says in effect to normalize the likelihood function to unit area in the
physical region, and then integrate it out to 6,, such that the fraction of area covered is
1 — 3. This procedure has been recommended by, among others, the Particle Data Group
[PDG94]. Although the method is simple, it has some conceptual drawbacks. For the case
where one knows 6 > 0 (e.g. the neutrino mass) one does not really believe that 0 < § < 1
has the same prior probability as 10 < 6 < 10% 4+ 1. Furthermore, the upper limit
derived from 7(6) = constant is not invariant with respect to a nonlinear transformation
of the parameter.

It has been argued [Jef48] that in cases where # > 0 but with no other prior
information, one should use

m(0) = { 1gs (9.44)

This has the advantage that upper limits are invariant with respect to a transformation of
the parameter by raising to an arbitrary power. This is equivalent to a uniform (improper)
prior of the form (9.43) for log . It is unusable, however, for the case discussed here, since
the integrals in (9.42) diverge. Therefore, despite its conceptual difficulties, the uniform
prior density is the most commonly used choice for setting limits on parameters.

Figure 9.8 shows the upper limits at 95% confidence level derived according to the
classical, shifted, and Bayesian techniques as a function of éexp =2 —y for o; = 1. For
the Bayesian limit, a prior density 7(0) = constant was used. The shifted and classical
techniques are equal for éexp > 0. The Bayesian limit is always positive, and always

greater than or equal to the classical limit. As 6., becomes larger than the experimental
resolution o;, the Bayesian and classical limits rapidly approach each other.

9.10 Upper Limit on the Mean of Poisson Variable
with Background

As a final example recall Section 9.4 where an upper limit was placed on the mean X of a
Poisson variable k. Often one is faced with a somewhat more complicated situation where
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the observed value of k is the sum of the desired signal events k; as well as background
events ky,

=k + ks, (9.45)

where both k; and k; can be regarded as Poisson variables with means A; and A,
respectively. Suppose for the moment that the mean for the background A, is known
without any uncertainty. For A; one only knows a priori that A; > 0. The goal is to
construct an upper limit for the signal parameter \; given a measured value of k.

Since k is the sum of two Poisson variables, one can show that it is itself a Poisson
variable, with the probability function,

()\s + )\b)k

- e~ (ate) (9.46)

Jks Ass Ap) =
The maximum likelihood estimator for A, is

~

Mo =k =N, (9.47)

which clearly has zero bias since E[k] = A; + Ap. Equations (9.15) used to determine the
confidence interval become

(Ao 4 Ak e (&)
k! ’

S
k>kexp

(A9 4 )k e~ (AP +A)
k! 7

B = P SATN) = Y

kskemp

(9.48)
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which can be solved numerically for the lower and upper limits Al and A**. Comparing
with the case A\, = 0, one sees that the limits from (9.48) are related to what would be
obtained without background simply by

Ao = M(no background) — A, ,
A = X¥(no background) — X, . (9.49)

The difficulties here are similar to those encountered in the previous example. The
problem occurs when the total number of events observed k., is not large compared to
the expected number of background events Ay. Values of A for 1 — 3 = 0.95 are shown
in Fig. 9.9(a) as a function of the expected number of background events A,. For small
enough k.,, and a high enough background level Ay, a non-negative solution for Ai* does
not exist. This situation can occur, of course, because of fluctuations in k,; and ky.

12 ‘ — 12
0 0
=k =k
o 10 o 10
Il Il
oy el
\ 8 \ 8
s 6 s 6
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5 4 - 4
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© o
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Figure 9.9: Upper limits AY? at a confidence level of 1 — 3 = 0.95 for different numbers of events
observed keqp and as a function of the expected number of background events Ay. (a) The classical limit.

(b) The Bayesian limit based on a uniform prior density for A;.

Because of these difficulties, the classical limit is not recommended in this case. As
previously mentioned, one should always report \s and an estimate of its variance even
if it comes out negative. In this way the average of many experiments will converge to
the correct value. If, in addition, one wishes to report an upper limit on Ay, the Bayesian
method can be used with e.g. a uniform prior density [Hel83]. The likelihood function is
given by the probability (9.46), now regarded as a function of A,

()\s + )\b)k

LA ==

e~ (ate) (9.50)

The posterior probability density for A, is obtained as usual from Bayes’ theorem,
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L) w(As) ds

PO = T T 2 ()

~—

(9.51)

Taking 7(As) to be constant for A; > 0 and zero for A; < 0, the upper limit A% is given
by

AT L) T(As) dA
Joo L(N,) m(AL) dX;

O (O A Ny )Feer e et ) gy
Jo© (X5 4 Ay Yheor e=(atho) d)g

(9.52)

The integrals can be related to incomplete gamma functions (see e.g. [Arf70]) allowing
equation (9.52) to be expressed as

e~ (AsFAp) ie_mg (AP 4 0,)*
B = : l;mp v k! . (9.53)
e~ Zk:o m
This can be solved numerically for the upper limit A¥”. The upper limit as a function of
Ap is shown in Fig. 9.9(b) for various values of k..,. For the case without background,

setting A, = 0 gives

k k
_ ot ()
6 =¢ Z k" 9

k=0

(9.54)

which is identical to the equation for the classical upper limit (9.16). This can be seen
by comparing Figs. 9.9(a) and (b). The Bayesian limit is always greater than or equal to
the corresponding classical one, with the two agreeing only for A, = 0.

The agreement for the case without background must be considered accidental,
however, since the Bayesian limit depends on the particular choice of a constant prior
density m()A;). Nevertheless, the coincidence spares one the trouble of having to defend
either the classical or Bayesian viewpoint, which may account for the general acceptance
of the uniform prior density in this case.
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Chapter 10

Characteristic Functions and Related
Examples

10.1 Definition and Properties of the Characteristic
Function

The characteristic function ¢,(k) for a random variable & with p.d.f. f(«) is defined as
the expectation value of €7,

bo(k) = E[¢™] = /_O; ey (10.1)

This is essentially the Fourier transform of the probability density function. It is
useful in proving a number of important theorems, in particular those involving sums of
random variables. Some characteristic functions of important p.d.f.’s are given in Table
10.1. Further examples can be found in [Ead71] Chapter 4.

Suppose one has n independent random variables zy,...,x,, with p.d.f.’’s
fi(z1), ..., fu(xn), and corresponding characteristic functions ¢1(k),...,¢,(k), and
consider the sum z = Y, x,. The characteristic function ¢,(k) for z is related to those of
the x; by

¢.(k) = /---/eXp (lkéxz) fil@e) - falzn)dey - - day, (10.2)

= /eikxlfl(il/’l)dil/’l"'/eikx"fn(wn)dwn
= (k) dalk).

That is, the characteristic function for a sum of random variables is given by the product
of the individual characteristic functions.
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Distribution p.d.f. characteristic function ¢(k)
Binomial | f(n; N,p) = gz P (1= p)¥ ™" (p(e® = 1) + 1)V
Poisson fn;A) = %e” exp(A(e* — 1))
o | fletest)={ 70 nn L iz
Exponential flz; ) = %6_90/5 1_12.%
Gaussian flzypu,0?) = 2;02 exp (_(§_2“)2) exp(ipk — Lo?k?)
Chi-Square flzin) = mzn/%le—z/z (1 — 2ik)~"/?
Cauchy fla)y=1 1—|—1x2 e I*!

Table 10.1: Characteristic functions for several commonly used probability functions.

To find the p.d.f. f(z) one must compute the inverse Fourier transform,

f(2)

_1/“
_27'[' —00

. (k) e dc

(10.3)

Even if one is unable to invert the transform to find f(z), one can easily determine its
moments. Differentiating the characteristic function m times gives

A
dkm

¢=(F)

dm

k=0

= T /eisz(z)dz

(10.4)

k=0

= " /Zm f(z)dz

_m )
_ZILLT)’L

where p! = F[z™] is the mth algebraic moment of z. One can use this, for example, to
show that the mean and variance of the Gaussian distribution are
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Elz] = —i%(exp(wk — ta*k?)) =
Vlz] = E[] - (E[2])?
= —dd—;(exp(i/,ek — 1o%k?)) - —u? =02, (10.5)

The property (10.2) allows us to prove a number of results that have been used already
in previous chapters. For example, consider the sum z of two Gaussian random variables
x and y with means fi,, y, and variances o2, o2. According to (10.2) the characteristic
function for z is related to those of x and y by

o:(k) = oulk) dy(k)
= exp(ipigh — $02k?) - exp(ipyk — Lolk?)
= exp(i(pte + py)k — 3(07 + 7). (10.6)

This shows that z is itself a Gaussian random variable with mean p., = p, + g, and

2 2 2
L =0, to,

variables was used in the example of Section 9.9.

variance o The corresponding property for the difference of two Gaussian

In a similar way one can show that the sum of Poisson variables with means A; is itself
a Poisson variable with mean Y, A;. Also using (10.2) one can show that for n independent
Gaussian random variables z; with means j; and variances o7, the sum of squares

z = iw (10.7)

2
a;

=1

follows a y2-distribution for n degrees of freedom. A proof of the Central Limit Theorem
based on similar arguments is given in [Bra92] Chapter 5.

10.2 Use of Characteristic Function to Find p.d.f. of
an Estimator

Consider n independent observations of a random variable = from an exponential
distribution f(x;&) = (1/€)exp(—x/£). In Section 6.2 it was seen that the maximum
likelihood estimator ¢ for ¢ was the sample mean of the observed x;:

£ = %Zn:x (10.8)



If the experiment were repeated many times one would obtain values of é distributed
according to a p.d.f. g(&;n, £) which depends on the number of observations per experiment
n and the true value of the parameter €.

Suppose one wants to find g(é; n,§). The characteristic function for x is

¢o(k) = /e“”’“’f(x)dx (10.9)
T el gy
= /0 e'* : e~ e dx

1
1 —iké

Applying equation (10.2) for the sum z = % | @; = né gives

IR
(L= ike)"

The p.d.f. g.(z) for z is found by computing the inverse Fourier transform of ¢,(k),

¢ (k) = (10.10)

—ikz

9.(2) = %/_O:O (16—7766)”% . (10.11)

The integrand has a pole of order n at —i/¢ in the complex k£ plane. Closing the
contour in the lower half plane and using the residue theorem gives

1 Pt
—#/E 10.12
TEN (1012)

g:(2) =

Transforming to find p.d.f. for the estimator é = z/n gives

g(&n.€) = gZ(Z)\dz/dé\ (10.13)
= ng.(nf)

A

n

1
n® & _née

CED T

which is a special case of the gamma distribution (see e.g. [Ead71] Chapter 4). Figure 10.1
shows the distribution g(é;n,f) for several values of the parameters. For n = 5
measurements one sees that the p.d.f. is roughly centered about the true value £, but
has a long tail extending to higher values of é In Fig. 10.1(b) one sees that the p.d.f.
becomes approximately Gaussian as the number of measurements n increases, as required
by the Central Limit Theorem.
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g(£n.8)

Figure 10.1: The sampling p.d.f. g(é;n,g) for the estimator & for various values of n and &. (a)
n = b measurements and various values of the true parameter £. (b) & = 4 and various numbers of

measurements n.

Expectation Value for Mean Lifetime and Decay Constant

Using now the conventional notation for particle lifetimes, equation (10.13) gives the p.d.f.
of 7= (1/n) ¥, t; used to estimate the mean lifetime 7 of a particle given n decay-time
measurements tq,...t,. Recall that the expectation value of 7 was computed in Section
6.2 by using the formula

o0 o (18 1 1
E[#(ty,...1,)] :/0 /0 (thi) ;e—fl/T ooty dt, = 7. (10.14)
=1

T

This result could have also been obtained directly from the p.d.f. of 7 (see equation

(10.13)),

E[f] = / # g(Fin,7) dF (10.15)
0
0 n ~n—1 .
- T
0 (n—1)! 7
= 7.

It was also shown in Section 6.2 that the maximum likelihood estimator for a function of
a parameter is given by the same function of the ML estimator for the original parameter.
For example, the ML estimator for the decay constant A = 1/7is A = 1/7. From ¢(7;n, 1)

~

one can compute the p.d.f. h(}),

125



h(Ain,A) = g(7in,7)

d# [d}| (10.16)

— n" A" —nA/A
(n — 1)! \n+1 '
The expectation value of X is
E[\ = /Ooj\h(j\;n,)\) dA (10.17)
0
— /OO AT A g
o (n—=1!)\n
- L.
n—1
One sees that even though the maximum likelihood estimator 7 = (1/n) 37 ¢ is an

unbiased estimator for 7, the estimator A = 1/7 is not an unbiased estimator for A = 1/7.
The bias, however, goes to zero in the limit that n goes to infinity.

Confidence Intervals for Mean of Exponential Random Variable

The p.d.f. g(é; n,§) from equation (10.13) can be used to determine a confidence interval
according to the procedure given in Section 9.2. Suppose n observations of the exponential
random variable & have been used to evaluate the estimator ¢ for the parameter £, and the

A

value obtained is £.,,. The goal is to determine an interval [a, b] given the data x1,...z,
such that the probabilities Pla < ¢] = a and P[{ < b] = [ hold for fixed o and [

regardless of the true value .

The confidence interval is found by solving equations (9.9) for a and b,

= [TaEn 1013

Figure 10.2 shows the 68.3% confidence intervals for various values of n assuming
a measured value éexp = 1. Also shown are the intervals one would obtain from the
measured value plus or minus the estimated standard deviation. As n becomes larger
the p.d.f. g(é; n, &) becomes Gaussian (as it must by the Central Limit Theorem) and the
68.3% central confidence interval approaches [éexp — 0, éexp + &é]. An example similar to
the one given here can be found in [Bra92] page 207, where the confidence intervals are
estimated using the likelihood function.
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10.2:

for

Classical confidence
the of the

exponential distribution £ (between solid

Figure
intervals parameter
points) and the interval [éexp — 0, é’exp +
¢ (between open triangles) for different
values of the number of measurements n,

assuming an observed value e, = 1.
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Chapter 11

Applications and Examples

In preparation.
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