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2. A generalization of time delay interferometry

3. Numerical simulations
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1. THE CHALLENGE OF LASER NOISE IN SPACE-BASED DETECTION
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1. THE CHALLENGE OF LASER NOISE

» In LISA, each science interferometer length mismatch is of millions of kms.

» Induces a huge noise due to laser frequency random fluctuations.
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1. THE CHALLENGE OF LASER NOISE @’ s ¢

» Solution: the interferometry is done as a post-processing step.

» The classic algorithm is called time-delay interferometry (TDI) [Tinto & Armstrong1999]

» Forms linear combinations of delayed phasemeter measurements tailored to cancel laser noise

» Some of them are equivalent to a synthetically reproducing a Michelson interferometer

photon path
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1. THE CHALLENGE OF LASER NOISE

» The standard formulation of TDI has some drawbacks:
» Based on physical considerations regardless of variance optimization
» Lengthy and hard-to-track equations

» Accounting for additional effects leads to introducing intermediary steps
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2. A GENERALIZATION OF TIME DELAY INTERFEROMETRY
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2. A GENERALIZATION OF TDI

» We look for a more general formalism. A bit like [Nayak & Vinet 2004], but statistical stand point.

» We turn the science measurement equations...

Si = Rit2 -

Sir = hijt1 -

Delay operators

Diz(t) =z (t — ¢ ' L;)

» Into a single matrix formulation:

Y = h—I—Mp—I—nJ

Stacked interferometer \ \

measurements 6 x 1 Laser noises
GW signal

Other noises
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»  We can then form a likelihood function
Full noise covariance

exp{—1(y—h) T (y—h)|
NERRAD]

p(y|0) =

>=MXM" +3%,
T T

Laser noise spectrum matrix Other noise spectrum matrix

» Problem: directly computing the likelihood may be inefficient or numerically unstable.
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2. A GENERALIZATION OF TDI &g = 10

» Solution: use principal component analysis (PCA) , as suggested in [Romano & Woan, 2006]
¢ Finds an orthogonal basis that concentrates only on low-variance data.

o Efficiently approximates the likelihood by diagonalisation of the covariance:

X=VAV*

»  We find that there are:

] Laser noise-
e 3 eigenvectors Vp with eigenvalues Ap J dominated

e 3 eigenvectors V ,, with small eigenvalues A, 1 Laser noise-free
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2. A GENERALIZATION OF TDI g " 1

»  We approximate the likelihood by restricting the data to the null space of the laser
covariance (see different derivation from Vallisneri et al. 2020):

1 . P 1 .
log p (y]0) ~ -5 (y — Mh)'V,C. 'V (y— Mh) — - log VS, V..
I * Equivalent to X, Y, Z transformation
Phasemeter data Eigenvector matrix of laser noise covariance
c,=V X, V,

»  Re-write it, making the orthogonalization explicit: C,, = PAP"

. IR 1
logp (y|6) = —5 (y — Mh)" V, @A @"V7 (y — Mh) — _log|A].

T

Eigenvector matrix of the projected covariance matrix =jjg- Equivalentto A, E, T transformation
[Prince et al. 2002]

1
2

} But valid of all types of assumptions §
f onnoise levels and arm lengths  §
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3. NUMERICAL SIMULATIONS
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3. NUMERICAL SIMULATIONS
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3. NUMERICAL SIMULATIONS & "

» Now assume that acceleration noise levels are not equal on all science interferometer:
example they have ratios between 0.1 to 20 with a mean of 4 x the baseline
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3. NUMERICAL SIMULATIONS

Joint estimation of delays, source parameters and covariance elements
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3. NUMERICAL SIMULATIONS

Joint estimation of delays, source parameters and covariance elements
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3. NUMERICAL SIMULATIONS o " 17

Joint estimation of delays, source parameters and covariance elements Cov (€)
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4. TOWARDS A MORE DATA-DRIVEN APPROACH &g == 1

»  We pave the way for a more flexible, general TDI based on PCA =»“PCI"
» Provides a systematic way to process LO data, regardless of the number of channels
» Performs frequency-dependent orthogonalization on the fly

» We can increase the robustness of LISA data analysis a more data-driven approach

https://arxiv.org/abs/2010.07224
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Credit: AEI/Milde Marketing

‘Thank you for your attention!




