Progenitors of low-mass binary BH mergers in the isolated binary evolution scenario F. García, A. Simaz Bunzel, **S. Chaty**, E. Porter, E. Chassande-Mottin

GW151226 & GW170608: the lightest binary BH mergers in O1/O2 runs

 Aims: study the formation history, progenitor properties and expected rates of the lightest BBH mergers detected during O1/O2 runs, with BH masses compatible with Galactic X-ray binaries (M < 18 M_☉)

Isolated binary evolution scenario

- Method: simulations using MESA¹ (1D-hydrodynamic stellar code) including binary evolution (interacting through stable MT) [*MESAbinary*]
- To model binary evolution, we incorporated in MESA:
 - **BH formation**: delayed corecollapse prescription (Fryer+2012)
 - **Common envelope** (CE) phase: unstable mass transfer (1D)
 - we compile in one run the full binary evolution, from ZAMS to BBH merger
- ¹http://mesa.sourceforge.net

Binary stellar-evolution simulations

- Explore a wide parameter space (66 632 simulations):
 - initial stellar masses [20-24/30-34 $M_{\odot}]$
 - orbital separations [40-200 R₀]
 - 4 metallicities [Z = 0.1, 1, 4, 7, 15] x 10⁻³
 - 4 stable MT efficiencies [ε = 0.0, 0.2, 0.4, 0.6]
 - 2 unstable MT efficiencies [$\alpha_{CE} = 1.0, 2.0$]
- **Results**: binary progenitors leading to BBHs with chirp mass & merger-time delay compatible with detected GW events
- **compare** local merger-rate densities with detected GW events

 $[Z_{\odot} = 12 \times 10^{-3}]$

Full binary evolution simulation leading to the formation of a BBH

Properties of binary progenitors

- We obtain >1000s binary progenitors distributed for metallicities (Ζ), MT (ε) & CE (α_{CE}) efficiencies:
 - Stellar progenitors of GW151226 more massive than GW170608
 - All progenitors experience a CE shrinking their orbital separation, leading to BBH merging in t < t Hubble
 - **No progenitor** found for fullyinefficient MT scenario ($\varepsilon = 0$)

Properties of binary progenitors (M_{i,1} vs M_{i,2})

- **High CE** efficiencies (a_{CE}) favored to eject CE, avoiding a *merger* during CE
- **Higher Z** lead to more massive progenitors (mass loss stellar winds)
- **Higher MT** ($\varepsilon = 0.6$) efficiencies allow for wider range (Z) of progenitors
- For a_{CE} =1.0 :
 - Low Z progenitors preferred in all cases (except for ε=0.6)
 - progenitors have mass ratio ~1 (q≠1 merge during CE, -> no BBH)

Properties of binary progenitors (ai vs tmerger)

- Higher orbital separation a_i leads to longer t_{merger} delay
- t_{merger} reduced for a_{CE} = 1.0 compared to a_{CE} = 2.0: a slow CE ejection reduces a_i
- No high Z progenitors with a_i < 80 R_☉ (*merge* during CE)

Properties of formed BBH: chirp mass vs mass ratio

- **BBH are formed with mass ratios q > 0.4** (for $\alpha_{CE}=2.0$, and q > 0.5 for $\alpha_{CE}=1.0$)
- For $\alpha_{CE}=1.0$: BBH of q~0.6-0.8 are preferred at high MT
- High ε=0.6 form BBH with q increasing up to 1: rejuvenation process (second-formed BH becomes more massive than first)

Population-weighted results: mass and separation

 We use uniform grids to estimate relative contributions of progenitors:

Initial Mass Function [Kroupa+2001]; Mass-ratio [0.1-1.0]; Separation/period [Sana+2012] (log P æ -0.55)

- **Progenitors:** M [20-40 M_{\odot}] and $a_i < 150 R_{\odot}$ (except for $\alpha_{CE}=2.0$ /high Z: M->70 M_{\odot} / $a_i \rightarrow 250 R_{\odot}$)
- Strong dependence on MT efficiency:
 interplay between stellar wind mass loss and initial
 binary separation

Population-weighted results: merger time delay

- Merger time delay strongly influenced by metallicity Z and CE a_{CE} efficiency:
 - For a_{CE} = 2.0: long time delay 1 Gyr
 [0.1-8 Gyr] (due to fast CE ejection):
 old population with high Z
 - For a_{CE} = 1.0: short time delay 100 Myr [0.01-1 Gyr] (slow CE ejection): young population with low Z
 - competition effect between both populations: high Z progenitors are not expected at high z

Merger-rate density estimates

 Density of GW events at redshift z obtained by Monte-Carlo integration:

 $\mathcal{R}(Z, z(t)) = \mathcal{N}_{\text{corr}} \int_{0}^{t(z)} \int_{M_{i,1}} \int_{M_{i,2}} \int_{a_i} \int_{0}^{t(z)} \frac{\mathrm{d}N}{\mathrm{d}M_{i,1} \,\mathrm{d}M_{i,2} \,\mathrm{d}a_i \,\mathrm{d}t_m}$ $\widehat{\text{SFR}}(t'; Z)\delta[t(z) - (t_m + t')] \,\mathrm{d}t_m \mathrm{d}a_i \,\mathrm{d}M_{i,2} \,\mathrm{d}M_{i,1} \,\mathrm{d}t'$

- SFR: star formation rate (Strolger+2004);
 ψ: metallicity evolution (Langer+2006)
- Rate evolution shaped by the SFR across z: rapid decay found for z < 1
- Chemical evolution has an impact on the rates: high Z drops at z > 1
- Local merger rate densities are larger for high CE phase and MT efficiency: R>0.1 for α_{CE}=2.0 & ε=0.6 (Z-independent)

Total merger detection rates for 01/02 runs

To estimate the local detection rate, we consider the detector sensitivity of LIGO/Virgo and the local merger rate densities (at z=0):

$$R_{\rm D} = \frac{4\pi}{3} D_{\rm h}^3 \langle w^3 \rangle \langle (\mathcal{M}_{\rm c} / 1.2 \, M_{\odot})^{15/6} \rangle \, \mathcal{R}(z=0)$$

- We obtain highest detection rate of light BBH of 0.5-3.0 Gpc⁻³ yr⁻¹
- compare to 9.7-101 Gpc⁻³ yr⁻¹ for full BBH population (Abbott+2019)

Rate dependence vs MT/CE efficiency

Progenitors of low-mass binary BH mergers in the isolated binary evolution scenario

F. García, A. Simaz Bunzel, S. Chaty, E. Porter, E. Chassande-Mottin

Paper submitted to A&A thank you for your attention!