

GdR Ondes Gravitationnelles 3ème Assemblée Générale 15/10/2020

using frequency-dependent squeezing with EPR entanglement

Catherine Nguyen

On behalf of the EPR-squeezing team of the Virgo Collaboration

Sensitivity and quantum noise for AdV+

Maraneca viigo sensitivity carve

Quantum noise is one of the major sources of noise

Sensitivity and quantum noise for AdV+

At high frequency

Shot noise

Heisenberg and squeezing

Frequency-dependent squeezing for AdV+

We need Frequency-dependent squeezing to induce squeezed light ellipse rotation: broadband reduction of quantum noise

FDS with a filter cavity

We need Frequency-dependent squeezing to induce squeezed light ellipse rotation: broadband reduction of quantum noise

> Solution n°1 : Filter Cavity [adopted]

- ☐ Inject frequency-independent squeezing into a Fabry-Perot cavity
- ☐ planned for O4 for AdV+ and aLIGO

R. Flaminio - Virgo France (VIR-0827A-20)

A new technique

physics

Article | Published: 15 May 2017

Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement

Yiqiu Ma [™], Haixing Miao, Belinda Heyun Pang, Matthew Evans, Chunnong Zhao, Jan Harms, Roman Schnabel & Yanbei Chen

A new technique

physics

- Less components __wave detection
- Less expensive
 - More flexible
 - no need of controls

- But...
- > 3 dB penalty
- Other losses

Proposal by Y. Ma et al. Nat Phys 13 no. 8, (Aug, 2017) 776-780

Detune pumping frequency (of Δ)

FREQUENCY-INDEPENDENT SQUEEZING

2

Auto-filtering of the signal and idler beams with the interferometer arm

Credit: Y. Ma et al.

3

Detection: signal and idler are detected separately and the outcome of one detector is conditioned by the outcome of the other detection (scaling factor g)

CONDITIONNAL SQUEEZING

WITH SQUEEZED SIGNAL IN A FREQUENCY-DEPENDENT WAY

3

Detection : signal and idler are detected separately and the outcome of one detector is conditioned by the outcome of the other detection (scaling factor g)

CONDITIONNAL SQUEEZING

WITH SQUEEZED SIGNAL IN A FREQUENCY-DEPENDENT WAY

✓ Recent proof-of-principle experiments was performed by the University of Hamburg and by the Australian National University with a simplified setup.

Our objective

Build a complete set-up to be implemented to Advanced Virgo

> Preparation for EPR table-top experiment

- Final optical layout almost fixed
- ☐ Preparation for components
- ☐ Preparatory bench at EGO to be transformed in an EPR bench

Etalon thermal control

Etalon design and tests at APC

- separate EPR entangled beams
- no locking system
- needs a good thermal control

(temperature fluctuations < 0.03 °C for >95% efficiency)

Mechanical holder

<u>Temperature controller</u> GdR OG – Catherine Nguyen

- User set the temperature
- read the temperature with a thermistor on the holder
- drive the current for the Peltier element
- PID system to stabilize at the set temperature

Etalon test bench

Thermal control & etalon caracterization

OVERLAP INTEGRAL

$$\gamma_{mes \leftrightarrow th} = \frac{\iint I_{mes}(x,y)I_{th}(x,y)dxdy}{\iint I_{mes}(x,y)^2 dxdy} \sqrt{\iint I_{theory}(x,y)^2 dxdy}$$
Overlap with a theoretical gaussian beam
$$> 99$$

FINESSE

$$T_{et} = T(0) * \frac{1}{1 + \left(\frac{finesse}{\pi}\right)^2 \cdot \sin\left(\frac{\varphi}{2}\right)^2}$$

Finesse = 14.7 + 0.8

Supplier data: finesse = 14

Take-away messages

- Squeezing using EPR entanglement is a technique to avoid using a filter cavity and an experiment will be built to test its application to Advanced Virgo.
- EPR beams separation will be operated by an etalon. Etalon characterization and thermal control system tests are almost finished.
- EPR squeezing is a promising technique for future detectors as Einstein Telescope.

Thank you for your attention!

>> Any questions?

