Cordes cosmiques, ondes gravitationnelles et abondance des vortons

Pierre Auclair

auclair@apc.in2p3.fr

Under the supervision of Danièle Steer and Chiara Caprini

Laboratoire Astroparticule et Cosmologie, Université de Paris

Troisième Assemblée Générale du GdR Ondes Gravitationnelles

⁰Based on 1903.06685, 2009.00334 and 2010.04620

Cosmic strings³ 1D topological defects

- Cosmic strings are 1D topological defects that may appear after a symmetry breaking phase transition
- After the phase transition the field falls into the new vacuum manifold ${\cal M}$
- Strings arise if M is not simply connected: there
 exist some closed paths on the vacuum manifold
 cannot be shrunk to a point
- Strings are expected to form in most models of spontaneous symmetry breaking ¹(some having currents)

Figure: String formation in the "Mexican hat" potential $V(|\phi|)^2$

¹Jeannerot, Rocher, and Sakellariadou 2003.

²Ringeval 2010.

³Kibble 1976.

Cosmic string loops

The loop production function

- Infinite strings are stretched by the expansion of the Universe
- They intersect each other and produce loops
- These loops decay by emitting gravitational waves
- The production of non-self intersecting loops is studied through numerical simulations and remains a matter of debate.
- We model the loop production function as⁴

$$t^5 \mathcal{P}(\ell, t) = C \left(\frac{\ell}{t}\right)^{2\chi - 3}$$

- LRS⁵: $\chi_{\rm rad} = 0.2$, $\chi_{\rm mat} = 0.295$
- BOS⁶: $\chi_{\rm rad} = 0.5$, $\chi_{\rm mat} = 0.655$

⁶Polchinski 2007.

⁶Lorenz, Ringeval, and Sakellariadou 2010.

⁶Blanco-Pillado. Olum. and Shlaer 2014.

Production of gravitational waves

The stochastic background

- Loops emit bursts of gravitational waves that are looked for in LIGO/Virgo
- The uncorrelated sum of all the GW signals constitutes a Stochastic Background of GW.

(a) BOS: $\chi_{\rm rad} = 0.5$, $\chi_{\rm mat} = 0.655$

(b) LRS: $\chi_{\rm rad} = 0.2$, $\chi_{\rm mat} = 0.295$

A multi-frequency analysis

Probing the parameter space

Figure: PA

taken at $f = 10^{-2}$ Hz

taken at $f = 2 \times 10^{-9} \text{ Hz}$

 $\Omega_{\rm GW} = 10^{-7}$ taken at $f = 20~{\rm Hz}$

Current carrying strings

Vortons: stable cosmic relics

- In some theories, a current can condense on cosmic strings
- This current carries angular momentum and can, in some cases, prevent the loops from collapsing
- These stable loops of current carrying cosmic string are called vortons.
- We consider strings formed at one energy scale and subsequently carry a current in a secondary phase transition

$$\mathcal{R} \equiv \lambda \sqrt{\mu}$$

Figure: A closed string with a current⁷

The abundance of vortons

Contribution to the dark matter content

- A loop is characterized by its proper length ℓ and a quantum number N
- At a length $\ell_0 = N/\sqrt{\mu}$, the loop stops shrinking and becomes a vorton
- The loop number density is the solution of a continuity equation with

$$\frac{\mathrm{d}\ell}{\mathrm{d}t} = -\Gamma G\mu\Theta(\ell - \ell_0) \tag{1}$$

The energy density of the vortons scales like matter

$$\Omega_{\text{vortons}} \equiv \frac{8\pi G}{3H_0^2} \int \mu \ell \frac{d\mathcal{N}}{d\ell}_{\text{vortons}}(\ell, t_0) \, d\ell$$

Figure: PA, P. Peter, C. Ringeval and D. Steer 2020

Conclusion

Summary

- Cosmic strings are a general prediction of most symmetry-breaking models
- Gravitational wave astronomy is one of the most promising technique to probe for cosmic strings.
- LISA will probe cosmic strings with tension $G\mu \geq 10^{-17}$, with little dependence on the precise cosmic string model
- Currents can condense on the cosmic strings and make them superconducting
- Stable configuration of current carrying loops: vortons, can contribute to the Dark Matter content of the Universe