Astrophysical implications of current O3 results

Tito Dal Canton, IJCLab

O1-O2 results

- Ten BBH mergers
- BBH merger rate
- A BNS merger
- BNS merger rate
- EoS results
- Short-GRB engine

- Kilonova
- H_{0} measurement
- Non-detections: NSBH, IMBH...
- Limits on merger rate
10.1103/PhysRevX.9.031040 (Abbott+ PRX 2019)
10.3847/2041-8213/ab3800 (Abbott+ ApJL 2019)

O1-O2 results: BH mass distribution

O1-O2 results: BH mass gaps?

O1-O2 results: BH spins

Magnitude

Tilt with respect to orbital angular momentum

GW190412

Parameter $^{\mathrm{a}}$	EOBNR PHM	Phenom PHM	Combined
m_{1} / M_{\odot}	$31.7_{-3.5}^{+3.6}$	$28.1_{-4.3}^{+4.8}$	$30.1_{-5.3}^{+4.6}$
m_{2} / M_{\odot}	$8.0_{-0.7}^{+0.9}$	$8.8_{-1.1}^{+1.5}$	$8.3_{-0.9}^{+1.6}$
M / M_{\odot}	$39.7_{-2.8}^{+3.0}$	$36.9_{-2.9}^{+3.7}$	$38.4_{-3.9}^{+3.8}$

Comparison with $\mathrm{O} 1+\mathrm{O} 2$ population

- Not a strong outlier
- Large effect on the BBH mass-ratio distribution

What formed such a binary?

- Many channels predict comparable masses
- Evolution of an isolated binary
- Maybe in tension with GW190412's spins
- Remnants of previous mergers in clusters
- Galactic triple or quadruple systems

GW190425

Substantially heavier than galactic systems

No compelling EM counterpart (but see Pozanenko+ 2019, with caveats)

GW190425

Possible interpretations and formation channels:

- BNS from standard isolated binary evolution
- Requires ultra-tight orbits or low-metallicity progenitor stars
- BNS from dynamical encounter in a cluster
- Rate of dynamically-formed BNS is debated
- Gravitationally lensed BNS merger
- Unlikely based on lensing optical depth
- BBH merger
- BHs in the NS-BH mass gap?
- Primordial BHs?

GW190521

BH mass measurements
BH masses from collapse models

GW190521

1. Intermediate-mass BHs can form via mergers of smaller BHs
2. Primary mass in tension with the population inferred from O 1 and O 2
3. BH s with mass in the pair instability gap merge at a non-negligible rate
4. Maybe large spins and/or eccentricity (e.g. Romero-Shaw+ ApJL 2020)

$$
R=0.13_{-0.11}^{+0.30} \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

How can such BHs (and GW190521) form?

- Previous BH mergers in stellar clusters
- Depends on 1 g BH properties in the cluster
- Stellar mergers (avoids pair instability)
- More common than hierarchical mergers
- Assumptions about H envelope, stellar rotation.
- All ~compatible with GW190521
- Large uncertainties
- AGN disks (gas accretion, torque, high escape velocity)
- ZTF optical candidate

GW190521 and ZTF19abanrhr

We predict a similar repeat flare in this source when the kicked BBH reencounters the disk on timescale $1.6 \mathrm{yr}\left(M_{\text {SMBH }} / 10^{8} M_{\odot}\right)\left(a / 10^{3} r_{g}\right)^{3 / 2}$.

"Current observations are insufficient to confidently associate the binary black hole merger GW190521 with AGN J124942.3+344929"

Ashton+ 2020

GW190814

What is it?

1. The lightest BH in a CB yet

- Most plausible scenario considering max NS mass estimates

2. The heaviest NS in a CB yet

- Constraints from EM nondetection (using preliminary estimates)

3. A more exotic object

GW190814

Challenge to all formation channels

- Isolated binary evolution
- Models may require revisions
- Dynamical origin
- Globular cluster models may require revisions
- Young star cluster more likely
- Hierarchical triple or quadruple systems
- AGN disks

Rate density of similar systems
$7_{-6}^{+16} \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$

Best localized dark siren $\rightarrow H_{0}$ estimate

$75_{-13}^{+59} \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} \quad$ GW190814 alone $70_{-8}^{+17} \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} \quad$ GW170817+GW190814

Not yet enough to resolve the tension

Conclusion

- Four interesting events from O3
- Formation models must deal with unequal-mass mergers
- Intermediate-mass BHs as merger remnants
- High-mass NSs and/or low-mass BHs
- Possibly the first NSBH merger
- How deep are the NS-BH and PI mass gaps?
- Do NS and BH masses overlap?

Merger type	Rate $\left(\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}\right)$
BNS	~ 1000
BBH	~ 50
GW190814 (NSBH?)	~ 7
GW190521	~ 0.13

- 56 public alerts during O3
- Half-O3 results to appear soon, then full-O3
- Catalog of compact binary mergers
- Updated inferences on merger rates, mass spectrum, spin distribution, cosmology...
~ Thank you! ~

