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Pulse Shape Analysis (PSA)

u !-ray tracking requires positions at resolution ~5mm "3$ at ~5kHz/CPU.

u Positions must be inferred from electrical response (PSA).

u Complex detector response makes parametric methods insufficient.

u Instead we simulate the detector response in ADL.

u Interaction locations are then determined by optimisation metrics:
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For	signals	of	segment	G at	time	step	-5 with	K typically	=2	

u Other metrics can be used to highlight different sensitivities.
u Different exponents, weighting for segments (L. Lewandowski, P. Reiter (2019))

u Time shifting via Dynamic Time-Warping.

u My work is on developing Novel PSA techniques for AGATA. 
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Detector Simulation 

u Basis sets are typically precomputed at 2mm cubic grid spacing

u Parametric trends are seen in the data, useful for clustering fold-1 data
u T10-90, charge asymmetry, knee-point, skewness etc.

u These parameters are continuous but break down at high fold.

u 6-fold symmetric, polar and tetrahedral basis sets simulated.

u High resolution (0.5mm) basis set generated too.

u Option for dynamic resolution basis sets.
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Simulation Limitations
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u SIMION Field simulation limited to 0.5mm spacing, ADL3 2mm basis has been hiding issues.
u SIMION front segmentation is wrong, has been since the beginning.
u Odd effects seen at segment boundaries & high resolution:
u Unexplained ‘charge sharing’ between segments.

u Overlap of SIMION definitions? (Confirmed by Marco AW:2019)

u Sharp discontinuities at edge changes (over-relaxation flaw?)

0.5mm FoM Plot showing odd effects
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Simulations Moving Forward
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u New detector simulation package has been developed by LEGEND: SolidStateDetectors.jl

u Written in Julia, multithreaded implementation with GPU (CUDA) support. 

u Utilises ADL mobility models for simulation.

u Uses Cartesian & cylindrical geometry systems.

u Geometry defined off primitives, implicitly defined:
u Geometry-on-demand philosophy.

u ∴ Dynamic resolution possible.

u Produces rectilinear grids of ", #, weighting potentials, could be converted to .pa files.

u Produces charge trajectories, pulses, ∴ full simulation possible.

u Calculates depletion volumes, voltages.

u AGATA crystals are far from simplistic:
u Difficult to properly define using existing primitives.
u Instead I added Tri-mesh support into the geometry constructor.

u Computation is significantly more intensive ∴ I multithreaded it.

u All fields & potentials are generated, CAO needs to be checked before simulation.



Simulations Moving Forward

u My PSA methods don’t rely on Euclidean information for navigation.

u Maps & relationships are self-organized off pulse shape.

u Most mapping occurs in non-Euclidean space anyways.

u ∴ we don’t need to keep a cubic or polar grid system.

u Other basis organisations could be used:

u Adaptive Tetra-mesh.

u Rectilinear grid.

u I modified ADL3 to generate these using a Wormhole Directory

u ADL is controlled by an Adaptive ND-Learner function.

u Points generated iteratively, initial coarse Tetra-mesh → fine detail.

u Resultant structure is stochastic, dynamic resolution.

u Work ongoing adding support for SolidStateDetectors control.
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Novel Algorithm Development

Several PSA algorithms have been tried for AGATA.

Only ~5% of the basis can be searched using current CPU methods.

There are three different ways to solve this issue:

u Hyper-parallelize the search (GPU acceleration).

u Use more efficient search methods (TDA).

u Don’t search at all, instead infer locations via training (ML).

This becomes a computer science problem

u ∴ Plenty of established fields to learn from.
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Novel Algorithm Development
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Topological Data Analysis (TDA) techniques try to organize data 
and form efficient search spaces.

u Search spaces are Non-Euclidean 

u Generally !"-ball or cover trees used.

u Less prone to local minima.

u Search algorithms aren’t naïve.

u Each step made moves search closer to optimum.

u Searching # points can be $ log # .

Machine Learning (ML) uses the simulated basis to learn trends via 
feature extraction.

u No searching is performed whatsoever.

u Simulated basis only needed for training.

u Needs an appropriate model & good data.



Novel Algorithm Development
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Tree-based search approaches:
u !NN - !-dimensional Nearest Neighbors.

u LSH – Locality-based Sensitivity Hashing.

u ST/DT MKS – Maximum Kernel Search.

Machine Learning options:

u Signal Classification.

u Regression (CNN).

u Autoencoding/Fingerprinting (β-VAE).

Other options:
u GPU Accelerated parallel search.

u All Algorithms have been tested with Gaussian Noise, experimental noise to be determined.
u Performance is likely to decrease.

u Will know more once signals are properly analysed.



Machine Learning in Pulse Shape Analysis

u Most of my Machine learning work hasn’t progressed much since AGATA Week 2019

u It’ll be revisited once experimental analysis is completed.

u As such I’ve moved most of the slides to the appendix.

u The work can be discussed if we have time.



Autoencoders for Tagging & Compression

u Autoencoders combine two separate networks to function:

u Encoder: converts input to a learned latent space via feature extraction.

u Decoder: converts latent space into a reconstructed output.
u Autoencoders are incredibly efficient however can be lossy. 

u The network effectively replicates a denoised input.

u Signal is intelligently denoised, small transients are unaffected.
u Network doesn’t see noise as useful information.

u Current Execution time ~56!s however will likely change.
u Autoencoders become more useful when split into parts:

u The Encoder and Decoder compress data far better than traditional methods.

u The latent representation can be used to express parametric trends.
u This requires disentangling the latent space (difficult)

u Can this be used for tagging?

u Compression isn’t necessarily bad, oddly the reconstructed pulses could end up being better than the inputs due 
to denoising.

u If the Autoencoded signal is significantly different to the real signal this suggests that the signal is weird
u Multiple hits in segment?
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Example Reconstructions, ~44x Compression Ratio 12
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Disentangled Autoencoders 13
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Reparameterization 

u Typical AE bottlenecks are difficult to interpret manually.

u Optimum bottleneck size is unknown, how many variables contribute? 

u DAE attempt to maximize the usefulness of the latent representation.

u This is done by making each latent variable strongly independent.

u Each latent variable should represent a different parametric trend.

u Latent space should be separable.

u Latent representation should be fold-invariant.

u Perform MKS on latent representation.

MNIST set example:

!"

!# Scott Freitas (CSE 591, 2018) 



Autoencoders for Basis Correction
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Reparameterization

u PSA and GRT perform differently when given real & simulated data.

u Therefore there’s likely some form of discrepancy between the two.

u How about using ML to transform simulated into real data?

u Simulation reduced to latent space & then reconstructed to experimental.

u This approach requires very good experimental data:

u Full !, &, ' characterisation of the crystal. 

u No guarantee that trained model can be adapted to different crystals.

u Validation data for A005 will be taken anyways.
u May as well test the feasibility of this method.

u Transform of preamplifier response also possible.



GPU Acceleration

u GPUs have advanced significantly (10x) since the last AGATA investigation.
u GPU acceleration can be used on embarrassingly parallel problems:

u Exhaustive search.
u Adaptive Grid search (two step).
u Matrix manipulations.

u Figure of merit (although matrix sum ! log% & )

u Shared memory makes things complicated.
u Multiple languages can utilise GPU accelerated code:

u C, C++ (NVCC).
u Julia (CuArrays).
u Python (with Numba, Scikit-CUDA).

u Programs can be compiled to use NVBLAS:
u MLPACK (Armadillo).

u GPUs are very powerful for ML approaches.
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Routine Types Operation
GEMM ', ), *, + Multiplication of 2 matrices.
SYRK ', ), *, + Symmetric rank-, update
HER, *, + Hermitian rank-, update
SYR2, ', ), *, + Symmetric rank-2, update
HER2, *, + Hermitian rank-2, update
TRSM ', ), *, + Triangular solve (right angled)
TRMM ', ), *, + Triangular matrix-matrix multiply
SYMM ', ), *, + Symmetric matrix-matrix multiply
HEMM *, + Hermitian matrix-matrix multiply

Nvidia  Quadro P5000

10.63 TFLOPS                    8.9 TFLOPS

Nvidia  Quadro RTX5000



Automated TDA Searching

u Established C++ Library MLPACK used for KNN & MKS operations.
u GPU acceleration possible using NVBLAS.
u Additional Python API & Command line interfaces available.
u Modular design allows for custom Figures of Merit, segment handling.
u Prefers smooth & convex search spaces.

u Doesn’t like searching multiple segments.
u Metric penalizes segments far from interaction.

u Should work for multiple interactions within the same segment.
u Combinations need to be precomputed.

u Outrageous memory costs if implemented.
u PCA transform mitigates this

u Currently 3 techniques look applicable to Fold-1 searches:
u !DT
u LSH
u MKS
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Fast-MKS Searching

u Fast Maximum Kernel Search uses two trees to search an ordered data 
structure.

u First tree is used to convert reference set into structured data.

u Second tree is then dynamically built using query set.

u Efficient comparisons mean that the space can be searched quickly.

u Self-navigation allows for non-Euclidean search space ∴ PCA, ICA & βVAEs

u Lower-dimensional space requires preserved homology:

u Check MST, connectivity, point density.

u Mercer Kernels allow for modifications of phase space, improve separations.

u More complex kernels have execution penalty.

u Cosine kernel offers best tradeoff.
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Fast-MKS Preliminary Results

u 10% Gaussian noise added to simulated database for preliminary validation.

u MKS with Cosine kernel used to return top 5 solutions of kernel search with confidences.

u On 4477D space: 95% of fold-1 events identified at input location, 99% within 2mm.

u For 100D space: 81% of fold-1 events identified at input location, 96% within 2mm.

u ~1ms per pulse on 4477D space, 0.15ms on 100D embedded space

u Currently clustering of deviations are not well understood, needs further analysis.
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Experimental Validation
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u Coincidence scanning of A005 will be used to validate simulations, ML 
efforts and PSCS method (IPHC, Strasbourg & Salamanca).

u Will provide a definitive & time-aligned basis for GEANT4.
u Allows for proper simulations of high-fold events.

u Currently using Caen 1724s, requires GO box & a lot of conversion:
u AGATA → BNC → LIMO → SMA →MCX

u Analysis using MTSort 5.2 (with improved Transpiler) 

u 1GBq 137Cs source collimated to 1mm on ", $ stage, 0.5mm steps.
u Currently ~ 180 (", $) scan positions at 2 crystal depths, ~ 1500 usable pulses.

u 90° scatter using BGO array & energy gating (374 & 288keV).

u Most validation measurements have now been taken.

u 241Am surface scan remains to be done.

u After A005 is completed we’ll start with A009
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AGATA conversion box
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Spectra looks pretty standard, fairly large 511keV peak due to lead collimators, occasional contaminant from external sources
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Experimental Validation
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u Coincidence scanning of A005 will be used to validate simulations, ML 
efforts and PSCS method (IPHC, Strasbourg & Salamanca).

u Will provide a definitive & time-aligned basis for GEANT4.
u Allows for proper simulations of high-fold events.

u Currently using Caen 1724s, requires GO box & a lot of conversion:
u AGATA → BNC → LIMO → SMA →MCX

u Analysis using MTSort 5.2 (with improved Transpiler) 

u 1GBq 137Cs source collimated to 1mm on ", $ stage, 0.5mm steps.
u Currently ~ 180 (", $) scan positions at 2 crystal depths, ~ 1500 usable pulses.

u 90° scatter using BGO array & energy gating (374 & 288keV).

u Most validation measurements have now been taken.

u 241Am surface scan remains to be done.

u After A005 is completed we’ll start with A009

Completed Scan positions

High-res
scans



Example signal
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u Average pulses created via 
mean exclusion filtering

u Outliers iteratively excluded till 
~50% of pulses remain. 

u Periodic noise present in mean?

u ~1.5keV, thermal fluctuation?

u Needs conversion before PSA 
profiling (10ns sampling)



Conclusion

u SIMION fields should really be redone, probably all basis sets too. 

u GPUs have advanced significantly over the last decade, likely to continue in the future.

u Should be revisited considering future projections.

u Tree-based search methods are incredibly efficient but difficult to adapt to high fold.

u Use fold-invariant search space instead?

u Very applicable for Fold-1 regardless.

u ML approaches offer good learned relationships but need adaptions to high fold.
u Realistic high fold dataset necessary.

u Embedded space searching offers a speedup at the cost of accuracy.

u Variational Autoencoders may simplify pulse storage whilst helping with PSA.

u Experimental work is continuing well despite quarantine.
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Thanks for Listening
Any Questions?
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Signal Discrimination with ML

u Main motivation of this method was to identify interesting sections of the interaction.
u Possible groundwork for software-based trigger.

u Because of this these networks need to be fast (and likely simple).

u Position gated pulses used to generate database of hit, transient & noise samples.

u Various networks trained to predict category.

u Ultimately the cut is arbitrary, open to interpretation.

u Doesn’t offer much above traditional methods.

u However if we want to look for something specific it’s pretty useful.
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Method Agreement with Midas Label Execution Time (!s)

Multi-Level Perceptron ~68% 9

Binary Perceptron ~87% 9
Neural Network ~94% 22

Convolution Neural Network ~97.6% 26

A004

A005



Determining Multiplicity with CNNs

u Similar setup as before, input data is either core electrode or superpulse.

u Multiplicity to simulate taken from expected distribution.

u Two scenarios simulated:

u Multiple hits in the same segment.

u Multiple hits in the same crystal.

u Output of network still treated as categorical

u Likelihood of fold reported, pick the most likely

Initial results look promising however simulation was heavily idealized.

Issues with this method:

u Interaction locations & energies picked at random, should use GEANT4 instead.

u Realistic noise floor needed, will use experimental data.
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CNNs for Regression

u CNN used to return continuous outputs.

u Trained on 6x8x120 tensor (core contact excluded).

u Column repeats used for CNN windows.

u ResNet architecture used for robustness.

u Gaussian noise & Dropouts used for reliability.

u Should use experimental noise instead.

u Works well on detectors with high connectivity.

u Currently only implemented for fold-1 events.

u Training on multi-fold requires separate networks.

u This isn’t difficult, I’m just waiting for an accurate simulation of multiple fold events. 

u Reasonable execution time ~300µs.

u Variable FWHM, performs worse at boundaries.

u Will likely decrease with realistic data.
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CNN ! Deviations
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CNN ! Deviations
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CNN ! Deviations
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Position Regression with Machine Learning

u Training set taken from ADL simulated pulses, Gaussian noise added

u CNN attempts to predict interaction location from superpulse

u Currently limited to fold-1 events, may be mitigated by using windows 

Fraser Holloway - F.Holloway@liverpool.ac.uk

34

CNN Prediction Discrepancy



Cluster Optimisation & Tree Building
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u Initial investigations were made into optimizing the clustering used in AGS.

u Instead of using Euclidean splitting the basis was split parametrically:

u Segment # → T10-90 → Charge asymmetry → Transient Signal Fingerprint → FoM

u This allows for hierarchical ordering of basis & bespoke optimizations.

u Resolution of metrics inversely related to execution time.

u Faster metrics narrow down solution → FoM test applied on final cluster.

u Low resolution metrics mitigate overfitting.

u Sensitivity of the detector is accounted for.

u Ultimately parametric clustering difficult (impossible) at high fold.
u Accurate fold-invariant metrics difficult to make (might be possible with ML).

u Method will likely be revisited in the future.

u Framework written in C ∴ can be compiled into MTSORT.

u Made somewhat obsolete by LSH.


