Deep Neural Networks

Joana Frontera-Pons

OUTLINE OF THE TALK

Objectives

* Propose and set the **goals** for the training,

Organisation

- * Decide on the **organisation** of the different training sessions,
- * Discuss the number, the length and modalities of the sessions.

Content

* Introduce the different **topics** that will be addressed during the training,

Discussion

* Open discussion, questions comments and remarks

OBJECTIVES OF THE TRAINING

- Learn the basic bricks of Artificial Neural Networks and Deep Learning,
- Overview of the main optimisation strategies in deep learning,
- Understand how to evaluate and improve the performance of a Deep Neural Network,
- Get familiar with Convolutional Neural Networks and learn how to use the most widely spread models,
- Use CNNs as building blocks for different types of architectures (ResNets, YOLO,...),
- Propose new architectures adapted to the applications in the THINK project.

ORGANISATION

Theoretical Sessions

10 theoretical sessions (1h30 each)
Webminar through 5 or 10 weeks
Alternatively, concentrated in one week?
Is the content appropriate?

Exercises

- Proposal of exercises/mini-project
 through the training
 Implementation of the different
- Implementation of the different topics in Python

SESSION 1: INTRODUCTION

SESSION 2: DEEP NEURAL NETWORKS

Shallow

Deep Neural Network

Need to define:

L: number of layers,

a[l]: activations in layer I,

a^[L]: Output/ prediction

SESSION 3: BIAS AND VARIANCE / REGULARIZATION

SESSION 4: OPTIMISATION STRATEGIES

SESSION 5: RECURRENT NEURAL NETWORKS

Examples:

- Speech recognition,
- Sentiment analysis,
- DNA sequence analysis,
- Machine translation

Audio

Four scores and seven years ago...

Text

SESSION 6: CONVOLUTIONAL NEURAL NETWORKS

SESSION 7: COMMON CNN ARCHITECTURES

Simonyan, Karen, and Zisserman. "Very deep convolutional networks for large-scale image recognition." (2014)

VGG - 16

Residual Networks

Application to One-shot learning and Style Transfer

SESSION 8: OBJECT DETECTION AND SEGMENTATION

- Classification: There is a balloon in this image.
- SemanticSegmentation: These are all the balloon pixels.
- ObjectDetection:There are 7 balloons in this image at these locations. We're starting to account for objects that overlap.
- Instance Segmentation: There are 7 balloons at these locations, and these are the pixels that belong to each one.

Instance segmentation is the task of identifying object outlines at the pixel level.

SESSION 9: REPRESENTATION LEARNING

Train the model in order to reconstruct as accurately as possible the input.

SESSION 10: GENERATIVE MODELS

- Advantatges and inconvenients of:
 - Variational auto-encoder
 - Generative Adversarial Networks

Thank you for your attention!