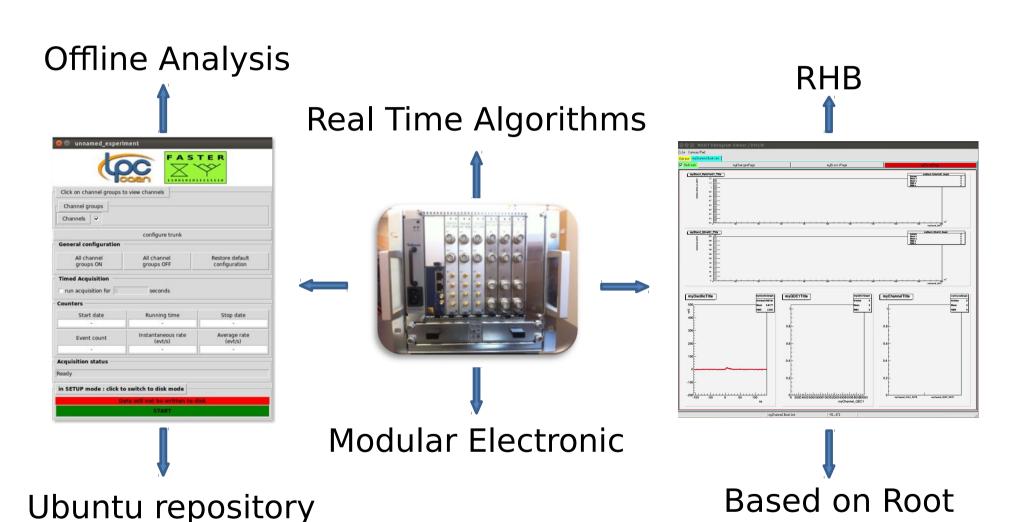


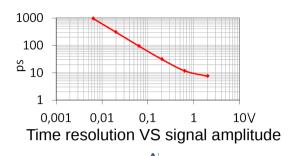
Kalray MPPA Massively Parallel Processor Array

Etasse David (4 Mars 2020/LPNHE)

FASTER

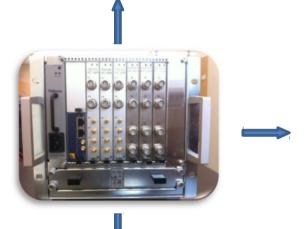
Carniol Benjamin, Chaventré Thiérry, Cussol Daniel, Etasse David, Fontbonne Cathy, Fontbonne Jean-Marc, Harang Julien, Hommet Jean, Langlois Jérome, Poincheval Jérome

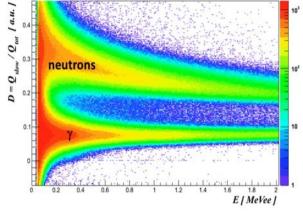




FASTER-V2 OVERVIEW

FASTER-V2 REAL TIME ALGORITHMS





FASTER-ELECTROMETER

FASTER_HV

Demon detector, CARAS board, FASTER-QDC-TDCHR

FWHM
keV
1,71
1,90
2,41

HPGe detector, MOSAHR board, FASTER_ADC

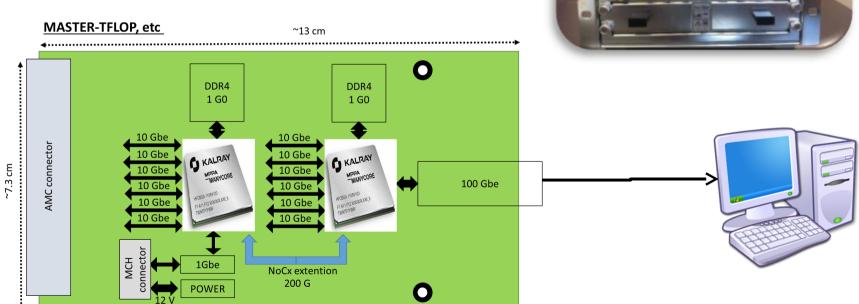
1000

60Co

1000

PROCESSOR MANY CORE

KALRAY PROCESSOR



PROCESSOR MANY CORE

Manycore
Processor for Next
Generation Vehicles

Kalray MPPA® Massively Parallel Processor Array

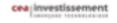
January 2020 - Confidential Information

www.kalrayinc.com

KALRAY IN A NUTSHELL

We offer a new type of processor targeting the booming market of intelligent systems

International Presence


France Grenoble (HQ), Sophia-Antipolis, USA Los Altos, California

Japan Yokohama

Breaktrough technology from **10** ye ars of development

23 patent families

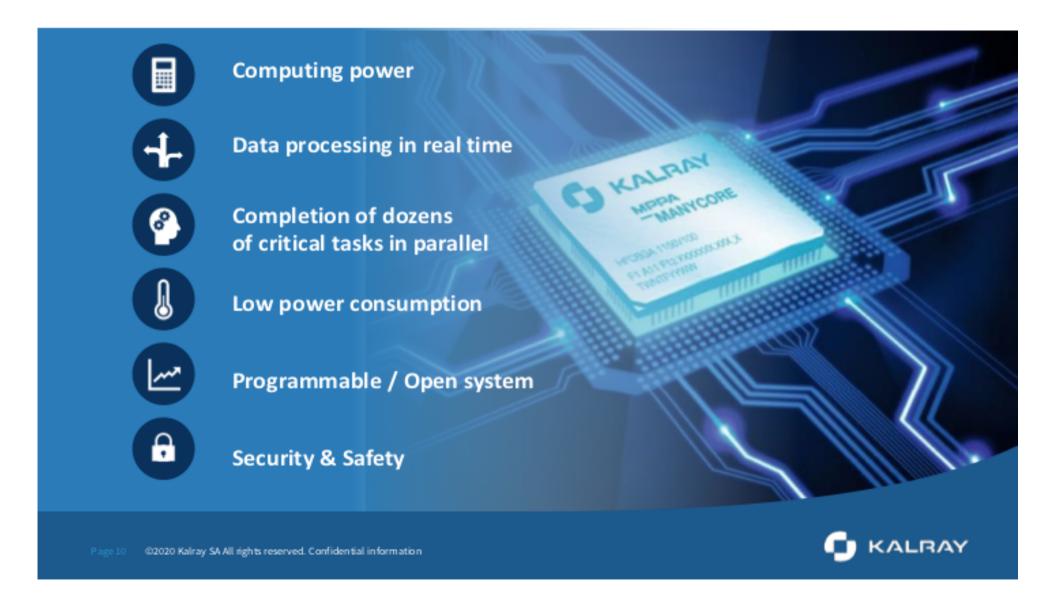
Financial and industrial investors

ACE

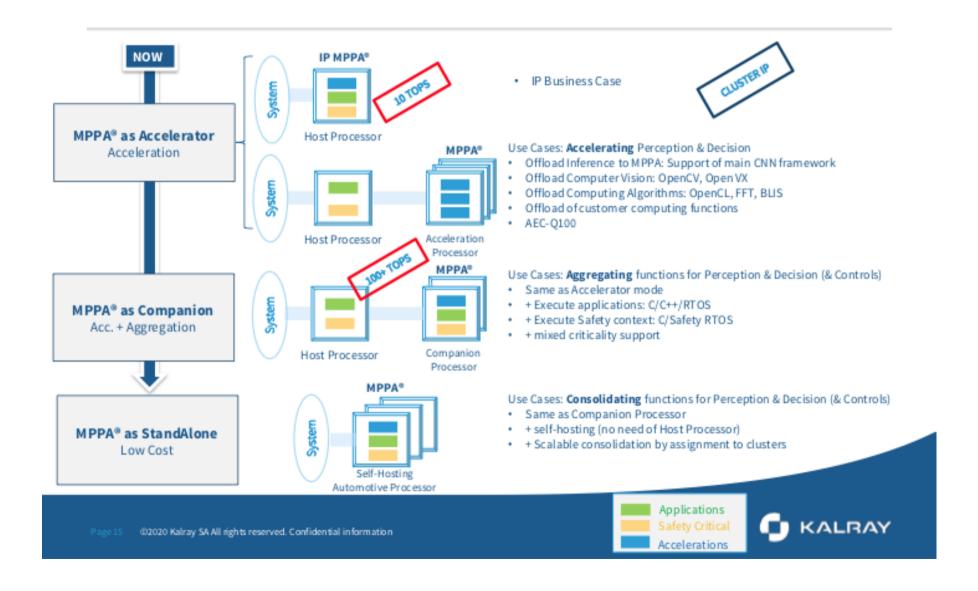
Pengpai

SAFRAN

bpifrance



IPO in June 2018 (ALKAL)


@2020 Kalray SA All rights reserved. Confidential information

MPPA® ARCHITECTURE BENEFITS

A STEP BY STEP & FLEXIBLE APPROACH

MPPA® ROADMAP SCALABLE PRODUCT FAMILY

SAMPLES 2018 2019 2021 2023

	BOSTAN	COOLIDGE v1	COOLIDGE v2 ⁽²⁾	DOLOMITES ⁽²⁾
PROCESS	28 nm	16 nm	16 nm	12 nm or 7nm
PERFORMANCE	1.3 TOPS ⁽¹⁾	25 TOPS (1)	50 / 100 TOPS ⁽¹⁾	100 TOPS (1)/ 200 TOPS(1)
USE CASES / MARKET	40G Data Center Auto Prototypes	100G Data Center / EDGE Autonomous Vehicles	100G Data Center / EDGE Autonomous Vehicles	Next Gen Data Center / EDGE Autonomous Objects
CONSUMPTION (WATTS)	25W	25W	30W/60W	N/A
	PRODUCTION	AVAILABLE	UNDER DEVELOPMENT	UNDER DEFINITION

@2020 Kalray SA All rights reserved. Confidential information

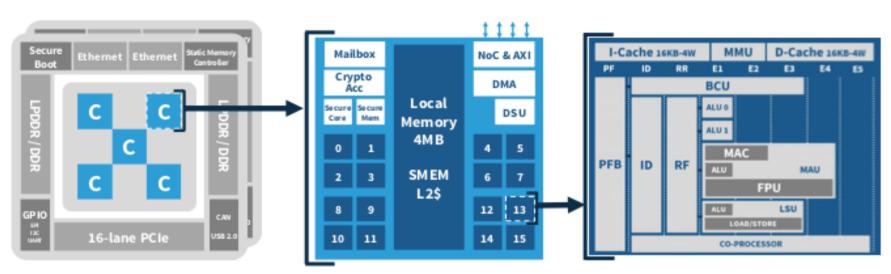
^{(1) 8-}bit operations ("TOPS")

⁽²⁾ Initial target - may change

STANDALONE SYSTEM BUILD ON MPPA

STANDALONE MODE

THE « FREE OF INTERFERENCE» and « DETERMINISTIC » MPPA® ARCHITECTURE ALLOWS FOR COMPLEX CRITICAL SYSTEMS
INTEGRATION ON A SINGLE DIE, RUNNING DIFFERENT OPERATING SYSTEMS AND SOFTWARE ENVIRONMENTS AND DRAMATICALLY
SIMPLIFYING CERTIFICATION EFFORT


Low Latency Data Transmission Static Memory **High Performance Compute** Safety / Security Critical Controller Ethernet Ethernet Accelerations Deterministic Light OS & OpenCL / CNNs App1 Real Time Code **High Performance Compute** Accelerations Light OS; OpenCL / CNNs App 2 Rich OS (e.g. Linux) & Non Safety-Critical Application **High Performance Compute** Code GPIG CAN Functions (Open Frameworks, applications.....) JSB 2.0 Light OS; OpenCL / CNNs App 3 16- lane PCIe Gen4 split in 8x 2-lane 1G Eth **High Speed Data Transmission**

Page 11 ©2020 Kalray SA All rights reserved. Confidential information

MPPA® COOLIDGE SCALABLE APPROACH for Next Generation Embedded Systems

MANYCORE PROCESSOR

Architecture updates

- 80 or 160 CPU cores
- 600/900/1200MHz frequency modes
 Memory
- L2 refill in DDR and Direct access to DDR from clusters

COMPUTE CLUSTER

Architecture updates

- 16 CPU 64-bit cores
- 16 Co-processor
- Safety/Security 64-bit core

Memory

- L1 cache coherency (configurable)
- 4MB memory (BW = 614GB/s)

3RD GENERATION VLIW CORE

Architecture updates

- 64-bit core
- 6-issue VLIW architecture
- MMU + I&D cache (16KB+16KB)
- 16-bit/32-bit/64-bit IEEE 754-2008 FPU
- Vision/CNN Co-processor

Page 20 ©2020 Kalray SA All rights reserved. Confidential information

Coolidge vs. Xavier Performance

		Coolidge-80 v1 @1.2 GHz	Coolidge -80 v2 @1.2 GHz	Coolidge -160 v2 @1.2 GHz	NVIDIA Xavier
INT8	Core	N/A	N/A	N/A	N/A
	Copro	24.6 TOPS	49.2 TOPS	98.4 TOPS	20 + 10
	TOTAL	24.6 TOPS	49.2 TOPS	98.4TOPS	30 TOPS
INT16	Core	2 TOPS	2 TOPS	4 TOPS	
	Copro	12.3 TOPS	24.6 TOPS	49.2 TOPS	10 + 5
	TOTAL	14.3 TOPS	26.6 TOPS	53.2TOPS	15 TOPS
FP16	Core	1.15 TFLOPS	1.15 TFLOPS	2.3 TFLOPS	
	Copro	3.05 TFLOPS	3.05 TFLOPS	6.1 TFLOPS	10 + 5
	TOTAL	4.2 TFLOPS	4.2 TFLOPS	8.4 TFLOPS	15 TFLOPS
FP32	Core	1.15 TFLOPS	1.15 TFLOPS	2.3 TFLOPS	
	Copro	N/A	N/A	N/A	1.3 TFLOPS
	TOTAL	1.15 TFLOPS	1.15 TFLOPS	2.3 TFLOPS	1.3 TFLOPS
Power		25W	30W	60W	30W

Page 22 ©2020 Kalray SA All rights reserved. Confidential information

Architecture

Core

- · 64-bit/32-bit architecture
- 6-issue VL IW
- 16KB instruction cache / 16KB data cache with MMU
- IEEE 754-2008 Floating Point Unit (FPU)
- Square root and reciprocal operations in floating single precision
- 64-bit integer multiplication (Asymmetric cryptography)
- Support up to 4 execution rings
- Support up to 256-bits per cycle Load/Store

Co-processor (one per Core)

- · Support of INT8, INT16 or FP16 accuracy
- Up to 128 MAC per cycle

Clust

- 16 x 64-bit Cores + 1 dedicated safety/security Core
- 4 M B of Memory / L2Cache 600G B/s Low Latency / High Speed
- . Configurable cluster/chip cache coherency modes
- Low Power (600 MHz) / Standard (900 MHz) / High performance (1.2 GHz) modes

System-on-Chip

- 5 clusters (total of 80 Cores + 5 security Cores)
- Up to 1.15TFLOPs (SP) / 384 GFLOPs (DP)
- Up to 3TFLOPs (16 bits) / 25 TOPs (8bits) for deep learning
- · 40GB/s High Speed/Low Latency Network-on-Chip
- Support standalone or acceleration mode (X86 or ARM Host)
- Support of chip-to-chip connection to scale performance

PCIe Interface

- · 16-lane PCIe GEN4 Endpoint (EP) or Root Complex (RC)
- · N-furcation up to 8 downstream ports in RC mode
- SR-IOV up to 8 Physical Functions / 248 virtual functions
- · Address translation and protection
- Up to 2048 MSI-X & 64 MSI interrupts
- Support for Hot plug
- Up to 512 DMAs for multi queues / kernel bypass drivers
- Direct PCle-to-clusters and PCle-to-DDR transfers
- Multichip extension

DDR4 Interface

- 64-bit LPDDR4/DDR4-3200 channels with side band/inline ECC
- Up to two ranks per DDR4 Channels
- Support for SoDIMM/UDIMM or soldered discrete devices
- Up to 2DDR channels with channel interleaving
- Up to 16GB per DDR channel

Offloading

- RDMA protocols RoCEv1/v2
- NVMe-oF storage protocol
- TCP/UDP/IP state less offload
- Checksum offload
- · Interrupt coalescing
- · MACSec / IPSec / SSL / TLS offload

Ethernet Interface

- 8x1/8x10/8x25/2x40/4x50/2x100 GbE
- RDMA using RoCEv1/v2
- NVMe-oF (RoCE) NVMe/TCP
- Jumbo Frame Support (9.6KB)
- Support for PTP 1588v2
- · Priority Flow Control (PFC), IEEE 802.1Qbb
- · Checksum offload Header & Payload
- . Line rate packet classification/load balancing
- · Hash & Round-robin based dispatch policy

Security

- . Secure Boot with authentication (ECD SA-256) & encryption
- True Random Number Generators (TRNG) compliant with FIPS 140-2. FIPS140-3. SP800-90B
- RSA, Diffe-Hellman, DSA, ECC, EC-DSA and EC-DH acceleration
- Non-volatile Asset store & Embedded Secure Element

Cryptography Accelerators (optional)

- AES-128/192/256 (ECB/CBC/ICM/CTR/GCM/GMAC/CCM)
- · AES-XTS for storage application
- MD5/SHA-1, SHA-2, SHA-3
- Kazumi/Snow 3G, ZUC

Management/Control Interfaces

- GPIOs/UARTs/SPI/I2C/CAN/PWM
- · SSI Controller for serial NOR Flash with optional boot
- . SDCARD UHS-I / eMMC 4.51 memory controller
- 2x USB 2.0 OTG ULPI
- JTAG IEEE 1149.1
- · 16-bit Parallel Trace Interface

Safety & Predictability

- · Mix criticality support
- · Lockable critical configuration
- Capability to bank memory and caches for non interferent & time predictable execution
- · LI Cache coherency enabling/disabling

Access Core SDK & Program mability

- · Support of Eclipse IDE
- · Support of open tool chain: GCC, GDB, LLVM
- Programmable core C99 and C++ 2014
- Operating System: Linux and configuration to port any RTOS
- Deep Learning code generator supporting popular Al frameworks (KaNN³⁴, Kalray Neural Network)
- Support of Open Standard Computing Language for deployment of parallel code
- · Support of OpenCV with optimized backend
- Support of Mathematical Libraries: FFT.BLAS. LAPACK
- · Debug and Trace per cluster and core
- · Simulators and profiling tools
- · Standard NIC drivers for host CPUs (ibVerbs, VIRTIO, SPDK, ...)

Copyright © 2020 Kalray, Kalray, the Kalray logo, MPPA®, AccessCore®, and other designated products included herein are the trademarks of Kalray. All other trademarks are the property of their respective owners. Not contractually binding, www.ka/rayinc.com

APPLICATIONS

Aerospace

5G Telecom Infrastructure

KEY BENEFITS

Single chip for whole app acceleration with open APIs

 Standard programmability (C/C++/Open Standard API, Open ACI.

High performance AI, low latency, low power

- 25 to 100 TOP
- Multiple concurrent applications:
 Multi-CNN, computer vision, parallel pre/post pracessing...
- -Low power consumption <20W (MPPA*
- Real-time data processina
- Scalable multi-MPPA® system suppon

Safety and high security

- Versatile high perf aypto-engine
- Hardware isolation and freedom of interference
- Secure Boot and root of trust

Seamless integration in existing AI ecosystems

- Same software environment as GPU/CPI
- Minimal application changes required
- No new training required
- Frameworks: Caffe, Tensorflow.
- Networks: GoogLeNet, ResNet, Yolo (v2,

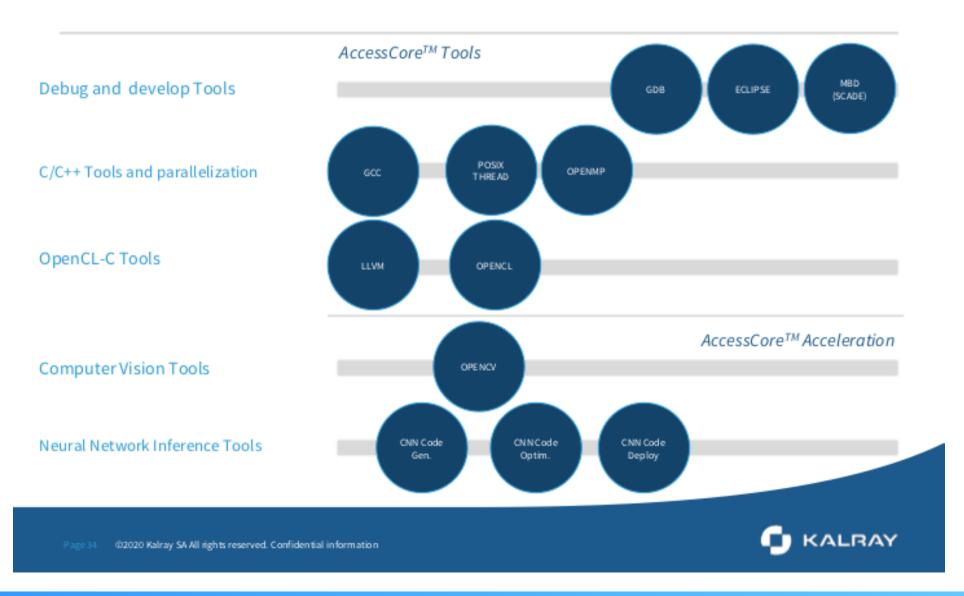
Accelerator card for Al and beyond

Bringing AI & massive computing to the Edge

Limitations of cloud-based AI, such as bandwidth, latency, power consumption, security and cost, have become bottlenecks for the deployment of AI in appliances close to data sources. The Edge is becoming the perfect destination for local processing of data, such as machine learning models trained in the cloud, enriched with context-adaptation and local complex intelligent processing.

Kalray addresses the challenge of distributing the AI and data processing across the Edge, bringing massive localized compute capability to the nodes.

K200™ card with MPPA® processor


TurboCard K200™ Specification and Performance

HW specifications			
Power consumption	20W (MPPA®) / 35W (board)		
Interface	PCle Gen4 x16, 2xQSFP28		
DDR	2x 4GB DD R4-32 00		
TOPS	25 TOPS per card (8-bit)		
Floating point operations	3 TFLOPS (16b), 800 GFLOPS (32b)		
MIPS	192 KDMIPS (Coolidge-80, 1.2 Ghz)		
Examples of neural network p	erformance		
GoogLeNet	3025 fps		
Faster-RCNN (VGG16)	302 fps		
Yolo v3	310 fps		

Data based on Coolidge MPPA®3-80

STANDARD DEVELOPMENT TOOLCHAINS

