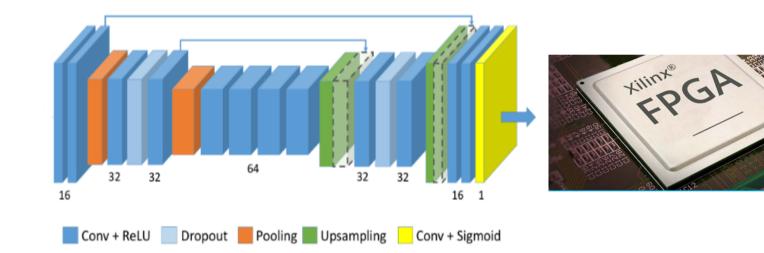
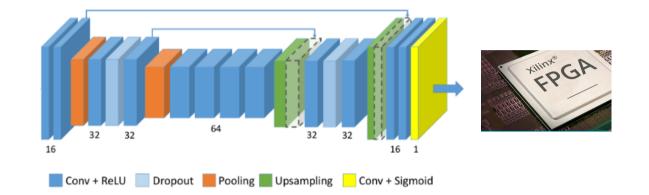
Neural-network Topology Bayesian Optimization for Hardware Implementation



Frédéric Magniette Think Project Kickoff

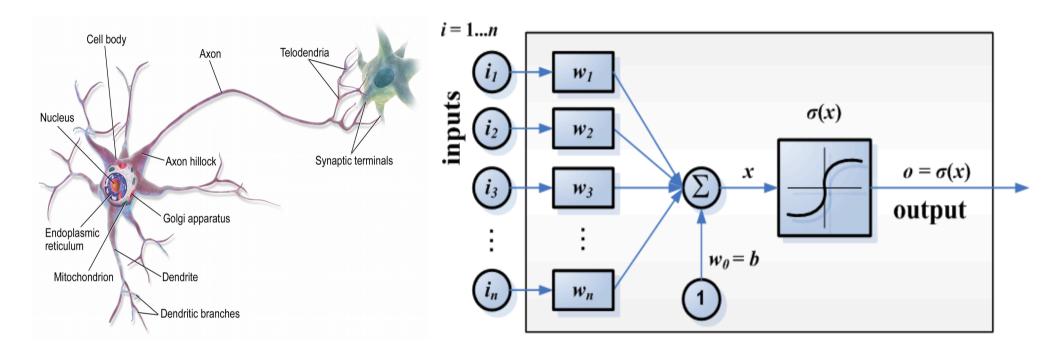
Introduction



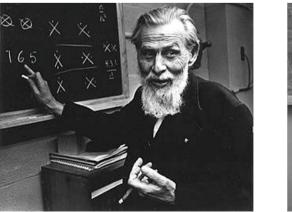
- Hardware implementations
 - Synthetizable models
 - Ressource management
- Need to optimize the network topology
 - Prior implementation
 - With respect to precision
- Two approaches
 - Pruning: reducing size of trained network
 - Optimization: find & train an optimal sized network at the same time

Neural networks

From real to formal neuron

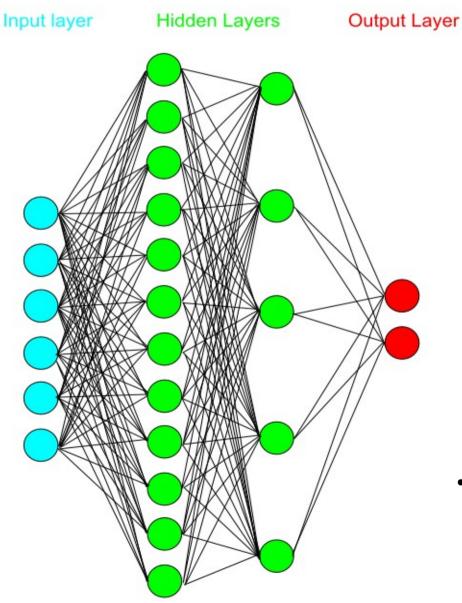


McCullock & Pitts – 1943 A logical calculus of the ideas immanent in nervous activity



Pitts

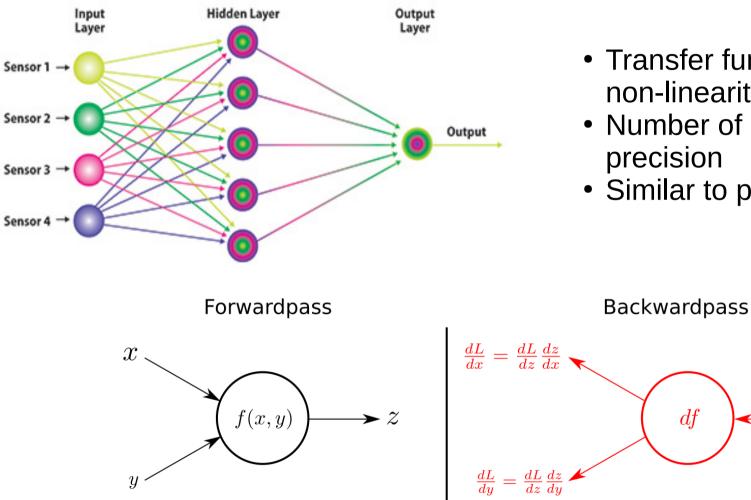
First artificial neural network



- Multi-layer perceptron
- Fully connected layers
- Deep Network : >6 layers

- Paul Werbos PhD 1974
 - multi-layer perceptron
 - gradient retro-propagation algorithm

How does it work



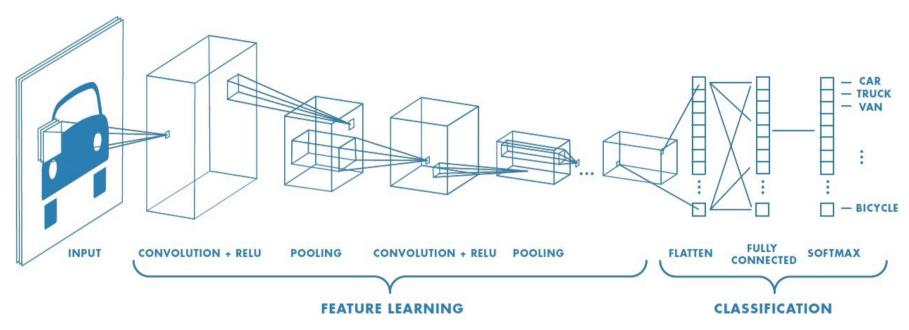
- Transfer function gives non-linearity
- Number of params gives precision

 $\frac{dL}{dz}$

• Similar to power series

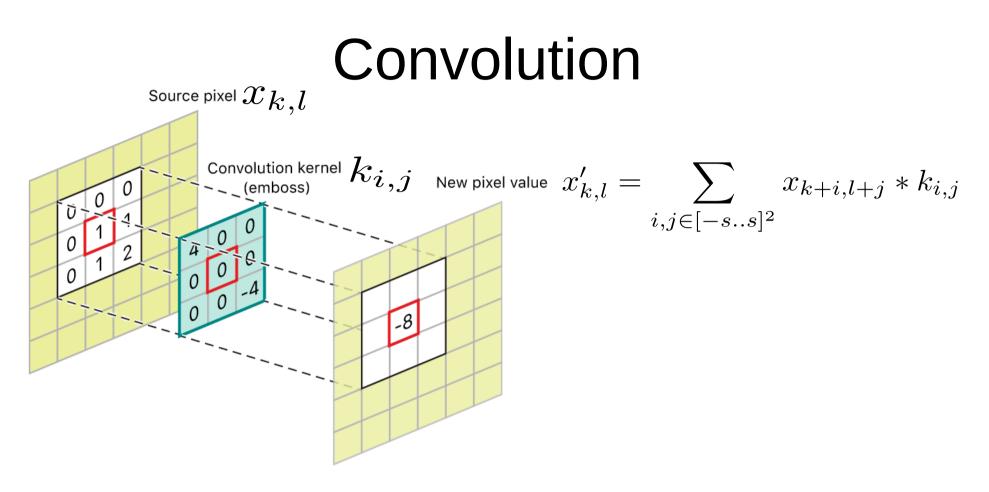
df

Convolutional network

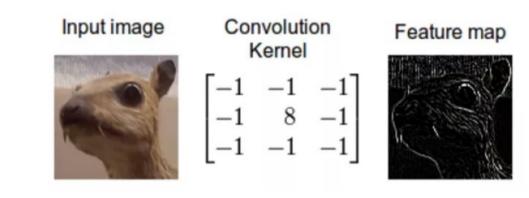


- Network structure :
 - Alternance of convolution & pooling
 - Flattering (sometimes called readout)
 - Multi-layer perceptron

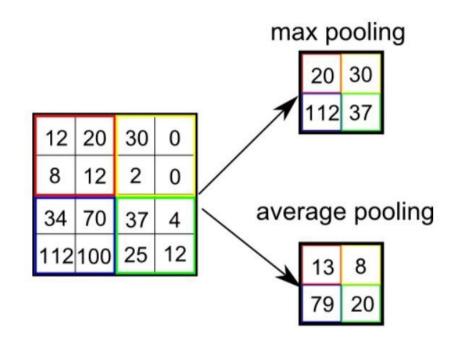
Yann Lecun & al – 1998 Gradient-based learning applied to document recognition.



- Apply kernel on image to create feature maps
- Shared weights over all input space (translation invariance)
- kernel is learnable $k_{i,j}$
- Idea : creating maps of features (one kernel per feature)

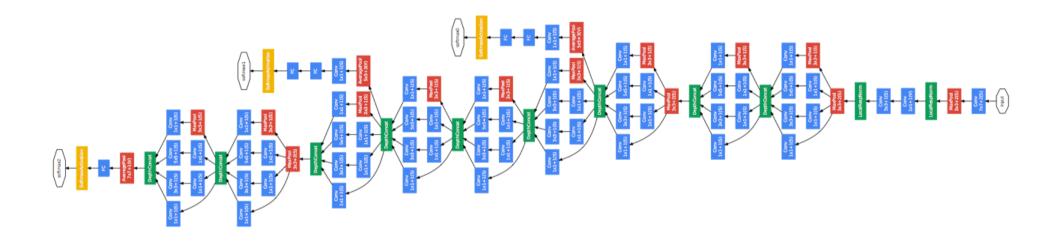


Pooling



- Reduce the dimensionality of the feature maps
- Move to higher level of abstraction
- Max pool is widely used

Hybrid Neural network



- Modern neural network : assembly of building blocks : neurons, convolution kernels, poolers
- Parametric : size and number of different layers, choice of transfer functions
- Training : Optimization of the parameters to minimize the loss function

What for ?

Х

Classification

1.0

0.5

0.0

-0.5

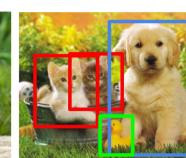
-1.0

0.0

0.2

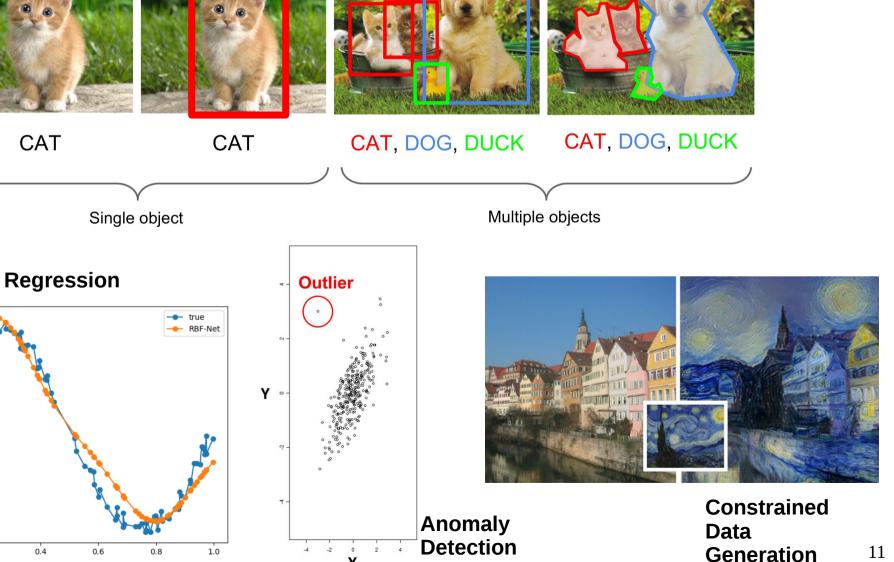
Classification

+ Localization



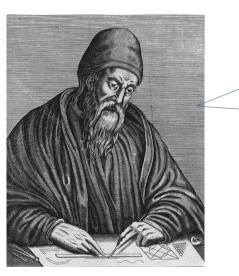
Object Detection

Instance **Segmentation**



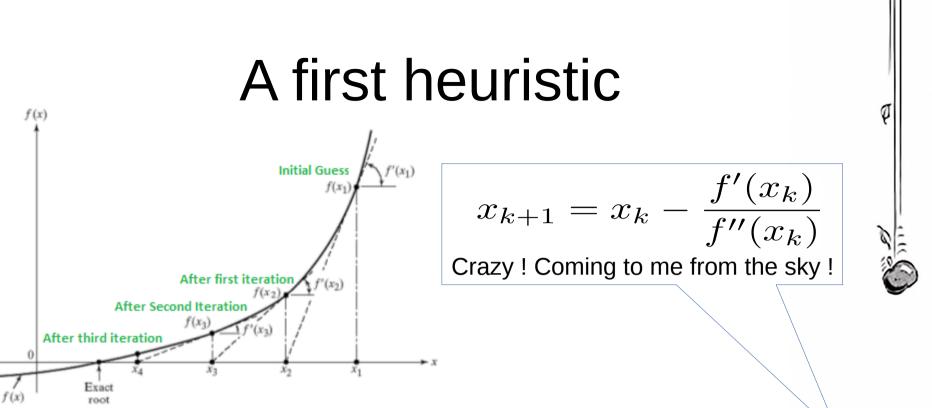
Optimization

Definition and analytic answer



 $argmin(f(\mathbf{x})) = \{ \mathbf{y} | \forall \mathbf{x}, f(\mathbf{y}) \le f(\mathbf{x}) \}$

- Easy general formulation (Euclid)
- First general answer with differential calculus
 - f'(x)=0 and f''(x)>0
 - Requires analyticity, derivability and solvability



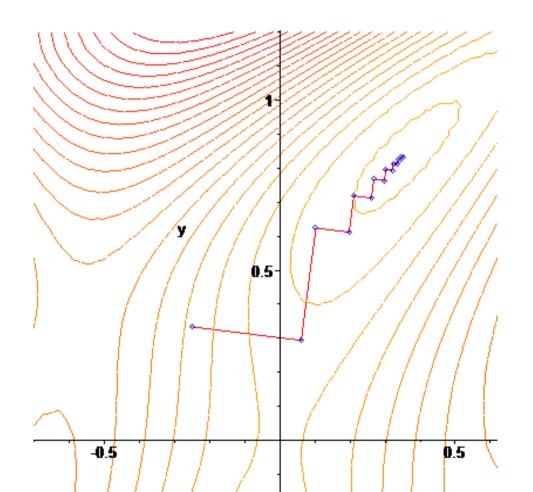
- First heuristic by Newton
 - iterative method to find a zero of the derivative
 - Second order method
- Only local derivatives required
- But : Hessian matrix computationally very expensive
 - \rightarrow need a first order solution

Optimization as a Blind Walk

- « Following the slope » method
- Only local knowledge of the field required
- Known as gradient descent algorithm class
- Proposed by Cauchy in 1847

Gradient Descent

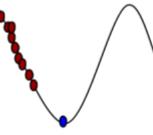
 $\nabla J(\Theta) = \left\langle \frac{\partial J}{\partial \Theta_1}, \frac{\partial J}{\partial \Theta_2}, \dots, \frac{\partial J}{\partial \Theta_n} \right\rangle$

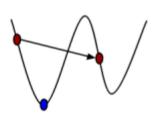


 $\Theta = \Theta - \alpha \nabla J(\Theta)$

VS

α: step size





very small learning rate needs lots of steps

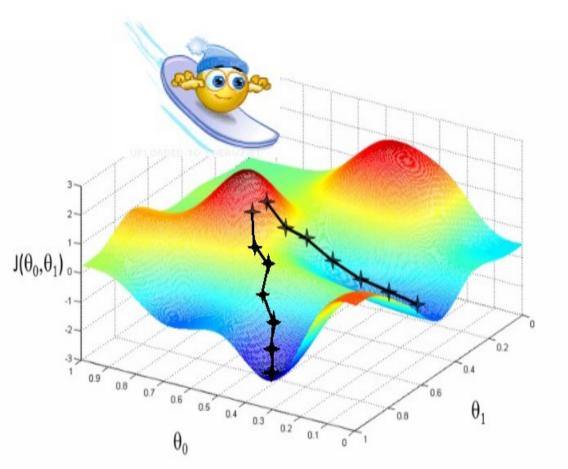
Precision

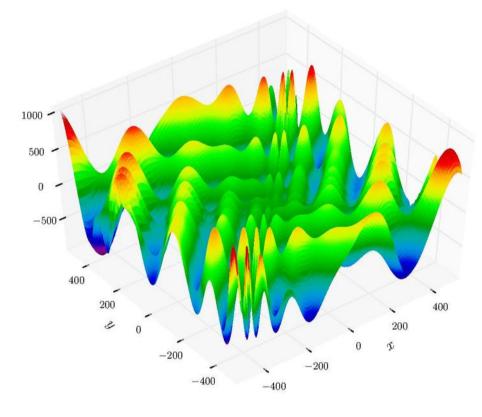
performance

too big learning rate:

missed the minimum

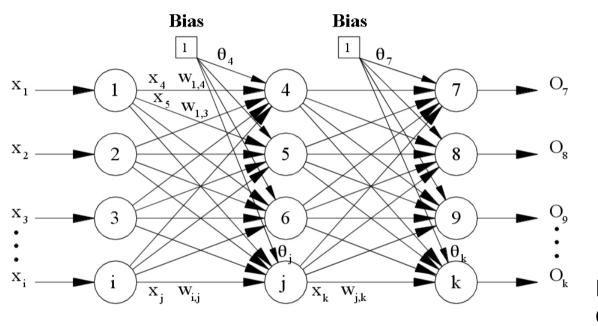
Gradient Descent & Convexity

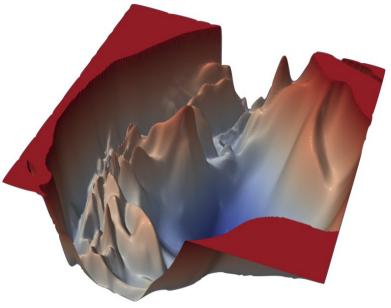




- Depend on the starting point
 → require convexity
- Practical solution : multiple random starts (no guarantee)
- Different class of convexity
- No convexity → no optimization

Optimizing Neural Networks





Li & al, « Visualizing the loss landscape of neural nets, 2018, 1712.09913

- Learn an algorithm by labelled data
- Optimization space : all weights named globally θ
- Function to optimize : loss function L(θ,data)
- Searching for a good minimum in the loss function

Why does it work ?

- Perceptron ↔ spherical spinglass model
- theoritical results
 - Exponential (in dim) number of local minima
 - Minus exponential number of bad local minima
 - Good local minimum :

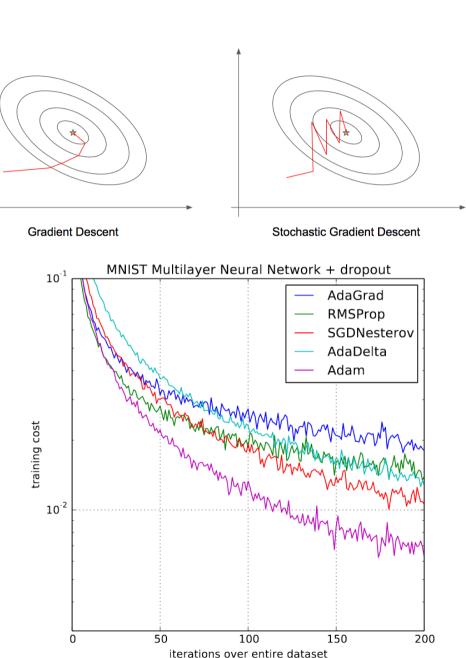
 $loss(min_{loc}) - loss(min_{glob}) \le \epsilon$

- Funnel global shape
- Global minimum is probably overfitting
- Deep learning (dim is big) gives better results

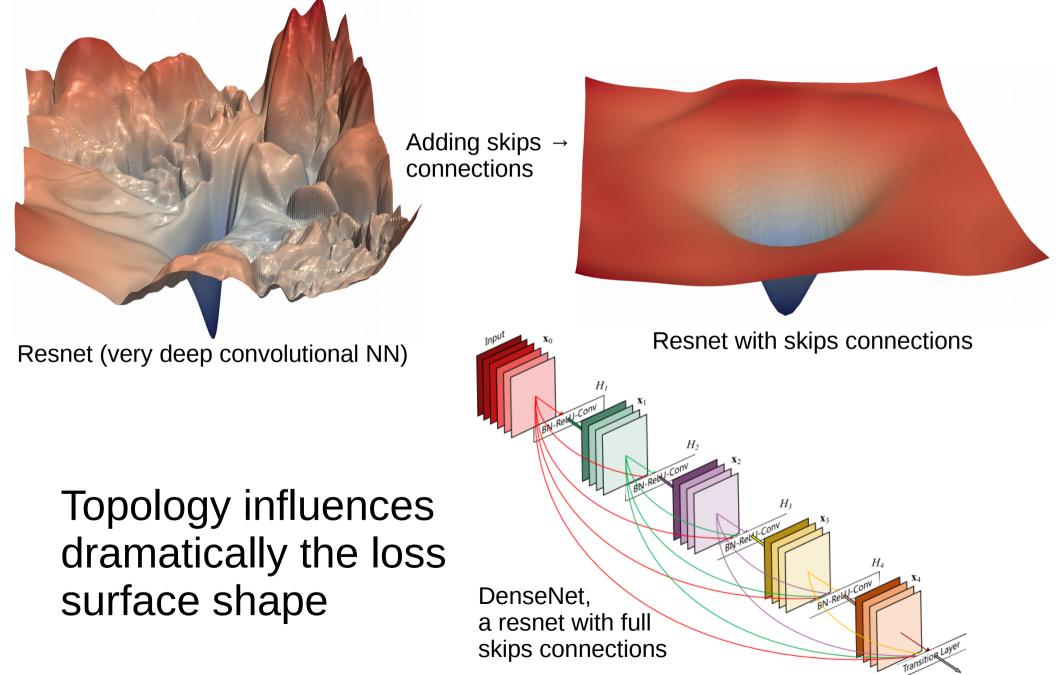
Lecun & al, The loss surface of multi-layer networks, 2015, 1412.0233

Optimizers for DNN

- Gradient descent implies huge storage of derivatives
- SGD slices the problem input by input :
 - slower the convergence
 - add variance
 - save space
- Big diversity of SGD derived algorithm
- Adam : a method for stochastic optimization, Kingma & Ba, 2017, 1412.6980
 - Automatic adaptative learning rate per parameter
 - Best performance ever → rules the world

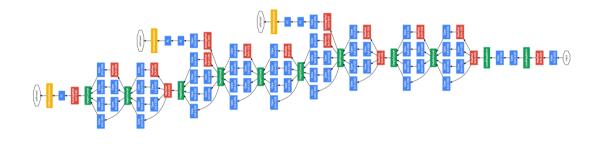


Topology Influence

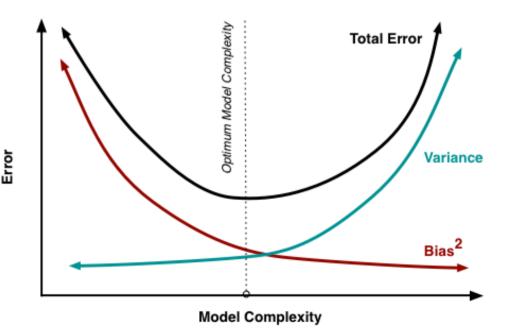


Two reasons to optimize topologies

1. Getting best distribution of building blocks



2. Find the bias-variance tradeoff



- No thumb-rule
- Often qualified as a dark-art

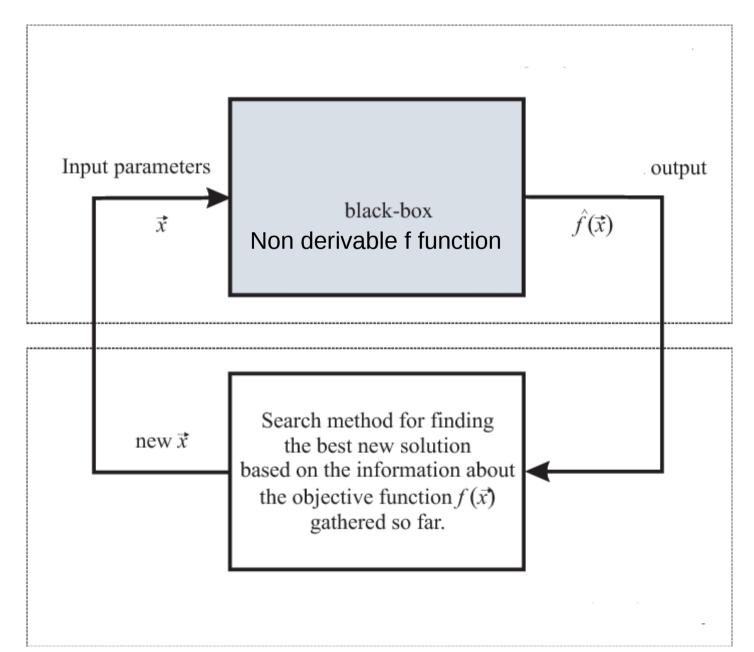
- Too simple model \rightarrow fit error increased
- Too complicated model → statistical error (variance) increased
- Gives a hope for global convexity
- Help us saving resources

Topology Optimization

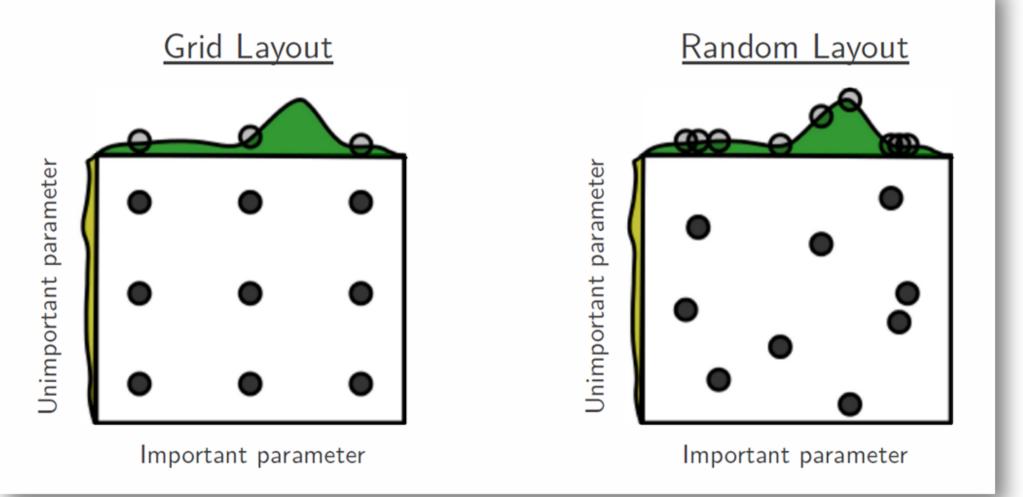
Topology Optimization

- Best topology under resource consumption constraint \rightarrow optimization problem
- Parameter space : parametric representation of network
- (sl1=400, ks1=5, ps1=32, ..., tf='lrelu', ck1='euclidian')
- Loss function : best precision with parametric trained network
- All right, doing gradient descent again ?
- Additionnal constraints
 - Each point is very expensive to calculate (full training)
 - The loss function is not derivable (even numerically)

Black Box / Zero-Order Optimization

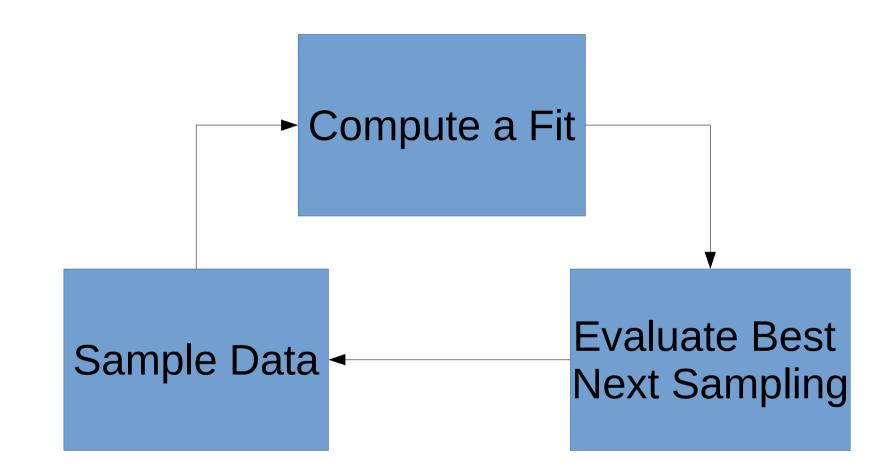


Grid and Random Search



Dimensionality

Data-driven Sampling



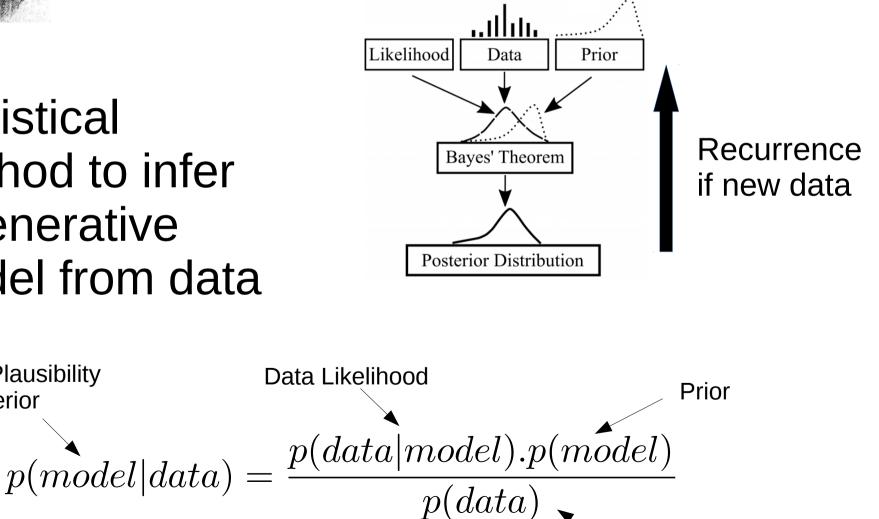
Best algorithm for expensive loss function Bayesian Optimization

Bayesian Inference

Statistical method to infer a generative model from data

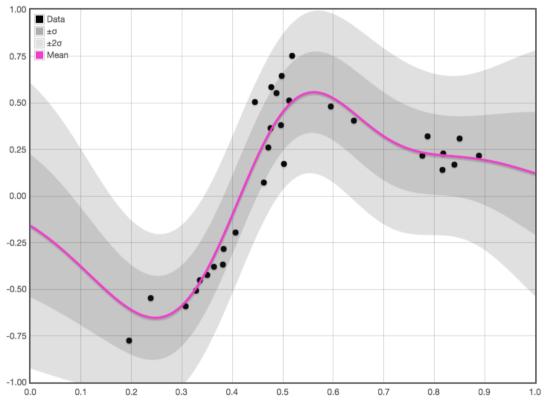
Model Plausibility

 \rightarrow posterior



Normalization

The model class : Gaussian Process

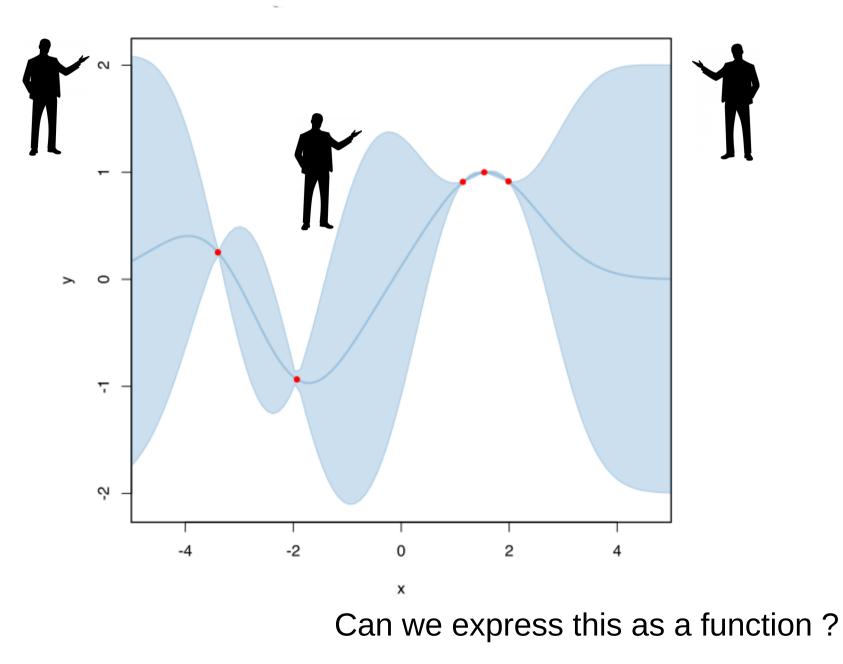


- Probabilistic function
- Arbitrary dimension
- Defined by
 - mean(x) function in pink
 - covariance(x)

width of grey bands

- Good fit for known data
- Covariance estimated as distance function

Where to search ? Promising points



Acquisition functions

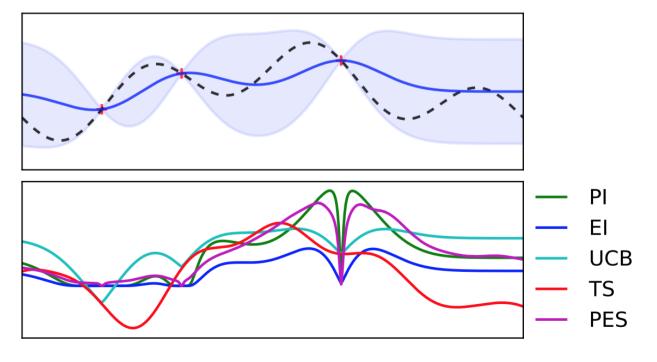
• Upper Confidence Bound (UCB)

$$A(x) = \pm \mu(x) + \kappa \sigma(x)$$

• Esperance of Improvement (EI or EOI)

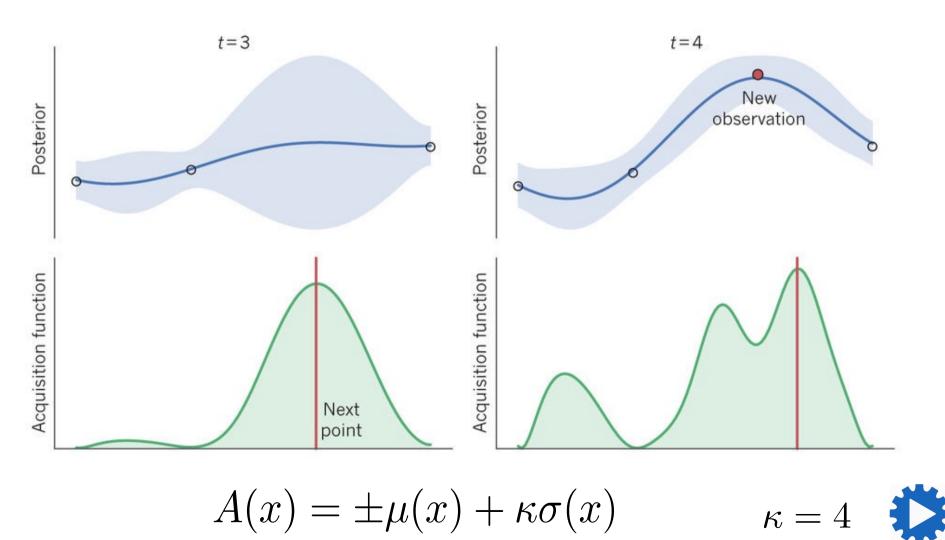
$$EI(x) = \mathbb{E}(max(f(x) - f_{max}, 0))$$

- Easy to compute on the whole space
- Rely only on Gaussian process

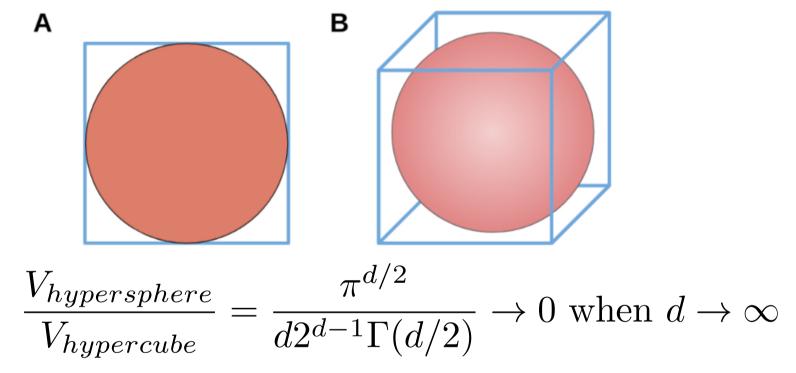


Bayesian optimization

Jonas Mockus, Bayesian Approach to Global Optimization, 1989

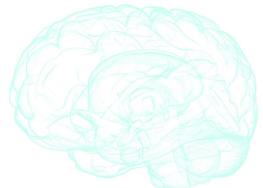


Limitation: Curse of Dimensionality



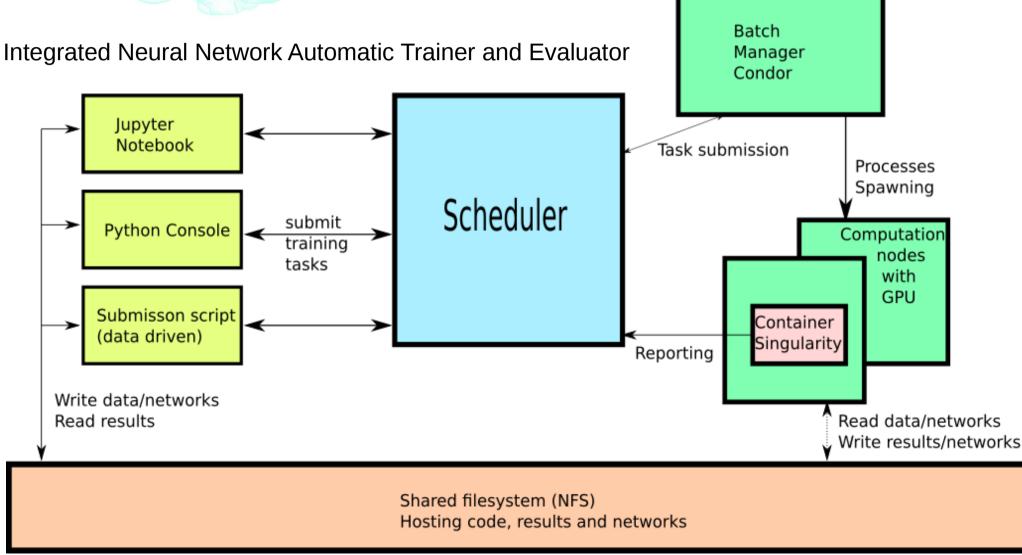
- Necessary data amount grows exponentially with dimension
- Concerns all « neighbouring » fit techniques
- BO is limited in dimension (around 20-30)
- Neural nets are not concerned because their loss function has a special shape (self-regularization)

Implementation & example



Innate

- Runtime encapsulate all algorithmic complexity
- \rightarrow ease of development
- Based on both Keras & Pytorch



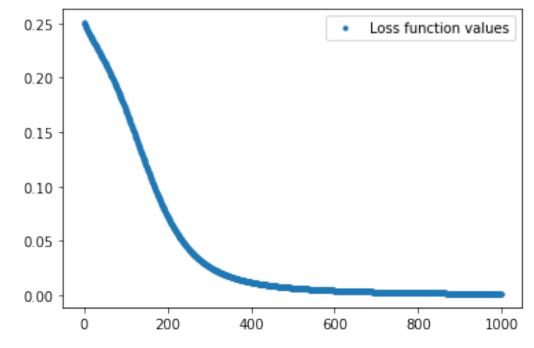
Innate API

import innate

```
#connect to scheduler
ie=innate.init("llrinnate.in2p3.fr")
```

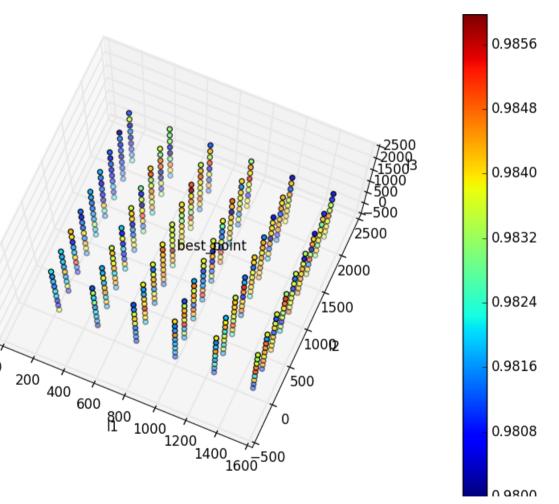
#launch a simple training (can be asynchronous)
res=innate.train_net(ie,task_name,nn_filename,data_filename,
results_folder,nb_epochs=1000)

```
#plot result
print("elapsed time :"))
print("%s"%(res["etime"]))
innate.plot_loss(res)
```



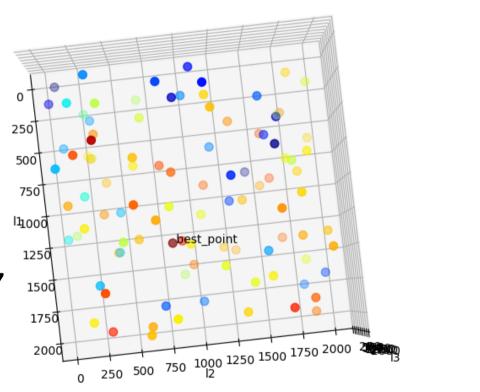
Grid search topology exploration

- Exploring a 3 layers topology between 1 and 2000 neurons
- Inputs : particle clustered energies per layer
- Objective : classifying pions vs electrons
- Precision=1-efficiency (pion seen as electrons)
- 294 points
- Best point : 750 1000 750 with precision 0.985977



Bayesian Optimization

- Bayes-opt implementation
- Only 100 points
 - 20 random points
 - 80 fit points
 - Could be optimized (50)
- Best point : 1341 835 1117 with precision 0.985696
- Same precision with 1/3 points



0.985

0.984

0.983

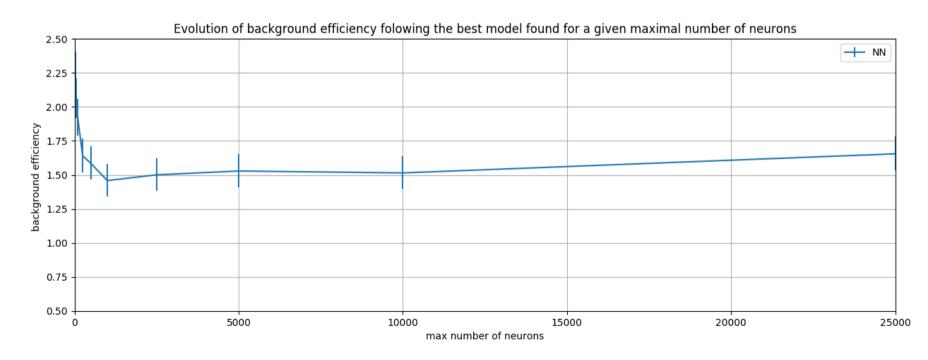
0.982

0.981

0.980

Global Performance over Resource Avaibility

- Taking different max size and searching for best size
- Max 15 layers
- Bias-variance trade-off highlighted



Perspectives

- For the THINK project
 - Create an easily deployable innate package
 - Create a tutorial for Bayesian optimization
 - to be discussed...
- For Innate
 - Implement Parallel Bayesian Optimization
 - Try on alternative architecture
 - Graph convolution networks
 - Auto-encoders
- Keep the trend in a VERY prolific domain !!