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Introduction

● Hardware implementations
– Synthetizable models
– Ressource management

● Need to optimize the network topology
– Prior implementation
– With respect to precision

● Two approaches
– Pruning: reducing size of trained network
– Optimization: find & train an optimal sized network at the same time
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Neural networks



  

From real to formal neuron

McCullock & Pitts – 1943
A logical calculus of the 
ideas immanent in nervous 
activity

Mc Cullock Pitts



  

First artificial neural network

● Multi-layer perceptron
● Fully connected layers 
● Deep Network : >6 

layers

● Paul Werbos – PhD - 1974  
– multi-layer perceptron
– gradient retro-propagation algorithm



  

How does it work

Training by back-propagation of error derivative

● Transfer function gives 
non-linearity 

● Number of params gives 
precision

● Similar to power series 



  

Convolutional network

● Network structure : 
– Alternance of convolution & 

pooling
– Flattering (sometimes called 

readout)
– Multi-layer perceptron

Yann Lecun & al – 1998

Gradient-based learning applied 
to document recognition. 



  

Convolution

● Apply kernel on image to crea te feature 
maps

● Shared weights over all input space 
(translation invariance)

● kernel is learnable ki,j

● Idea : creating maps of features (one 
kernel per feature)



  

Pooling

● Reduce the dimensionality of the feature maps
● Move to higher level of abstraction
● Max pool is widely used



  

10

Hybrid Neural network

● Modern neural network : assembly of building blocks : neurons, 
convolution kernels, poolers

● Parametric : size and number of different layers, choice of transfer 
functions

● Training : Optimization of the parameters to minimize the loss 
function
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What for ?

Regression

Anomaly 
Detection

Constrained
Data
Generation
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Optimization
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Definition and analytic answer

● Easy general formulation (Euclid) 
● First general answer with differential 

calculus
– f’(x)=0 and f’’(x)>0
– Requires analyticity, derivability and 

solvability
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A first heuristic

● First heuristic by Newton
– iterative method to find a zero of the derivative
– Second order method

● Only local derivatives required
● But : Hessian matrix computationally very 

expensive 

→ need a first order solution

Crazy ! Coming to me from the sky !
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Optimization as a Blind Walk

● « Following the slope » method
● Only local knowledge of the field required
● Known as gradient descent algorithm 

class
● Proposed by Cauchy in 1847
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Gradient Descent

α : step size

Precision        vs      performance
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Gradient Descent & Convexity

● Depend on the starting point
 → require convexity

● Practical solution : multiple random starts (no guarantee)
● Different class of convexity
● No convexity → no optimization
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Optimizing Neural Networks

● Learn an algorithm by labelled data
● Optimization space : all weights named globally θ

● Function to optimize : loss function L(θ,data)
● Searching for a good minimum in the loss function

Li & al, « Visualizing the loss landscape 
of neural nets, 2018, 1712.09913
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Why does it work ?

● Perceptron ↔ spherical spin-
glass model

●  theoritical results 
– Exponential (in dim) number of 

local minima 
– Minus exponential number of bad 

local minima
– Good local minimum : 

– Funnel global shape 

● Global minimum is probably 
overfitting

● Deep learning (dim is big) gives 
better results  

Lecun & al, The loss surface 
of multi-layer networks, 
2015, 1412.0233
 



20

Optimizers for DNN
● Gradient descent implies huge 

storage of derivatives 
● SGD slices the problem input by 

input : 
– slower the convergence
– add variance
– save space

● Big diversity of SGD derived algorithm
● Adam : a method for stochastic 

optimization, Kingma & Ba, 2017, 
1412.6980
– Automatic adaptative learning rate per 

parameter
– Best performance ever → rules the 

world
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Topology Influence

Topology influences 
dramatically the loss 
surface shape

Adding skips →
connections 

Resnet (very deep convolutional NN) Resnet with skips connections

DenseNet,
a resnet with full 
skips connections
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Two reasons to optimize topologies

2. Find the bias-variance tradeoff

● Too simple model → fit error increased

● Too complicated model → statistical error 
(variance) increased

● Gives a hope for global convexity

● Help us saving resources 

1. Getting best distribution of building 
blocks

● No thumb-rule
● Often qualified as a dark-art
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Topology Optimization
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Topology Optimization

● Best topology under resource consumption constraint → 
optimization problem

● Parameter space : parametric representation of network
● (sl1=400, ks1=5, ps1=32, … , tf=’lrelu’, ck1=’euclidian’) 
● Loss function : best precision with parametric trained 

network
● All right, doing gradient descent again ?
● Additionnal constraints

– Each point is very expensive to calculate (full training)
– The loss function is not derivable (even numerically)
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Black Box / Zero-Order Optimization

Non derivable f function
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Grid and Random Search

Dimensionality
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Data-driven Sampling

Sample Data

Compute a Fit

Evaluate Best 
Next Sampling

Best algorithm for expensive loss function 
Bayesian Optimization
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Bayesian Inference

Prior
Data Likelihood

Normalization

Model Plausibility
→ posterior

Recurrence
if new data

Statistical 
method to infer 
a generative 
model from data
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The model class : Gaussian Process

● Probabilistic function

● Arbitrary dimension

● Defined by 

● mean(x) function in pink

● covariance(x) 

width of grey bands

● Good fit for known data

● Covariance estimated

as distance function 
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Where to search ? Promising points

Can we express this as a function ?



31

Acquisition functions

● Upper Confidence Bound (UCB)

● Esperance of Improvement (EI or EOI)

● Easy to compute on 
the whole space

● Rely only on 
Gaussian process
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Bayesian optimization

 Jonas Mockus, Bayesian Approach to Global Optimization, 1989
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Limitation: Curse of Dimensionality

● Necessary data amount grows exponentially with 
dimension

● Concerns all « neighbouring » fit techniques
● BO is limited in dimension (around 20-30)
● Neural nets are not concerned because their loss 

function has a special shape (self-regularization)
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Implementation & example
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Integrated Neural Network Automatic Trainer and Evaluator

● Runtime encapsulate all 
algorithmic complexity 

→ ease of development
● Based on both Keras & Pytorch



  

Innate API
import innate

#connect to scheduler

ie=innate.init("llrinnate.in2p3.fr")

#launch a simple training (can be asynchronous)

res=innate.train_net(ie,task_name,nn_filename,data_filename,

results_folder,nb_epochs=1000)

#plot result

print("elapsed time :"))

print("%s"%(res["etime"]))

innate.plot_loss(res)
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Grid search topology exploration

● Exploring a 3 layers topology 
between 1 and 2000 
neurons

● Inputs : particle clustered 
energies per layer

● Objective : classifying pions 
vs electrons 

● Precision=1-efficiency (pion 
seen as electrons)

● 294 points
● Best point : 750 1000 750 

with precision  0.985977
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Bayesian Optimization

● Bayes-opt implementation
● Only 100 points 

– 20 random points
– 80 fit points
– Could be optimized (50)

● Best point : 1341 835 1117 
with precision 0.985696

● Same precision with 1/3 
points
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Global Performance over 
Resource Avaibility

● Taking different max size and searching for best 
size

● Max 15 layers
● Bias-variance trade-off highlighted 
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Perspectives 

● For the THINK project
– Create an easily deployable innate package
– Create a tutorial for Bayesian optimization
– to be discussed...

● For Innate 
– Implement Parallel Bayesian Optimization
– Try on alternative architecture

● Graph convolution networks
● Auto-encoders

● Keep the trend in a VERY prolific domain !!
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