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Introduction
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* Hardware implementations
- Synthetizable models
- Ressource management

* Need to optimize the network topology
— Prior implementation
— With respect to precision

* Two approaches
— Pruning: reducing size of trained network
— Optimization: find & train an optimal sized network at the same time



Neural networks



From real to formal neuron
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First artificial neural network

Hidden Layers Output Layer

* Multi-layer perceptron

* Fully connected layers

* Deep Network : >6
layers

-‘\1\ \w

* Paul Werbos — PhD - 1974
- multi-layer perceptron

— gradient retro-propagation algorithm



How does It work

Qutput

Layer
* Transfer function gives
\ non-linearity
e ® * Number of params gives
= precision
e Similar to power series
Forwardpass Backwardpass
y S=rT

Training by back-propagation of error derivative



Convolutional network
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 Network structure :

- Alternance of convolution &
pooling

- Flattering (sometimes called

Yann Lecun & al — 1998
readout)

: Gradient-based learning applied N
- Multi-layer perceptron to document recognition.




Convolution
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* Apply kernel on image to create feature _ _
maps Input image Colr::cr)rl]tgllon Feature map
« Shared weights over all input space

(translation invariance) =1l =1 =l
i -1 8 -1
« kernel is learnable k;; o e L

 ldea : creating maps of features (one
kernel per feature)



Pooling

max pooling
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* Reduce the dimensionality of the feature maps

* Move to higher level of abstraction
* Max pool is widely used



Hybrid Neural network

* Modern neural network : assembly of building blocks : neurons,
convolution kernels, poolers

* Parametric : size and number of different layers, choice of transfer
functions

* Training : Optimization of the parameters to minimize the loss
function
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What for ?

Classification Object Detection Instance

Classification

+ Localization

CAT, DOG, DUCK CAT, DOG, DUCK

J
v
Single object Multiple objects
Regression -1 Outlier
—e— true
1.0 4 —&— RBF-Net
0.5 4
Y =
0.0 1 °
-0.5
) Constrained

10 Anomaly Data

: .' : : : : © i ¢ < < Detection :
0.0 0.2 0.4 0.6 0.8 1.0 X Generat|on 11



Optimization
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Definition and analytic answer

argmin( () = {y %%, £(y) < f(x)]

* Easy general formulation (Euclid)

* First general answer with differential
calculus
- P(X)=0 and f’(x)>0

- Requires analyticity, derivability and
solvabllity 13



A first heuristic

¢
'I Tha1 — T f' (k)
S (xK)
Crazy ! Coming to me from the sky !

AN

* First heuristic by Newton
— Iterative method to find a zero of the derivative
- Second order method

* Only local derivatives required

* But : Hessian matrix computationally very
expensive

— need a first order solution



Optimization as a Blind Walk

* « Following the slope » method

* Only local knowledge of the field required

* Known as gradient descent algorithm
class

* Proposed by Cauchy in 1847
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Gradient Descent
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Gradient Descent & Convexity
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* Depend on the starting point
— require convexity
* Practical solution : multiple random starts (no guarantee)
* Different class of convexity
* No convexity — no optimization
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Optimizing Neural Networks

A .
L X W, V%, W, ° % Ligal « Visualizing the loss landscape
of neural nets, 2018, 1712.09913

Learn an algorithm by labelled data
Optimization space : all weights named globally 6

Function to optimize : loss function L(0,data)
Searching for a good minimum in the loss function
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Why does it work ?

. herical Spi Lecun & al, The loss surface
Perceptron ~ spherical spin- of multi-layer networks,

glass model 2015, 1412.0233

* theoritical results —

- Exponential (in dim) number of \n /
local minima ' J
"

- Good local minimum : /
l0sS(Mingee) — loss(Mmingep) < € I

— Funnel global shape

\f‘\n
» Global minimum is probably | ’
overfitting

* Deep learning (dim is big) gives lm)
better results
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Optimizers for DNN

Gradient descent implies huge
storage of derivatives

SGD slices the problem input by
iInput :

- slower the convergence
- add variance
— save space

Big diversity of SGD derived algorithm

Adam : a method for stochastic
optimization, Kingma & Ba, 2017,
1412.6980

- Automatic adaptative learning rate per
parameter

- Best performance ever - rules the
world

Gradient Descent

training cost

10

1

®

Stochastic Gradient Descent

MNIST Multilayer Neural Network + dropout

AdaGrad
RMSProp
SGDNesterov
AdaDelta

Adam

i
50

100
iterations over entire dataset

I
150

200



Topology Influence

Adding skips —
connections

Resnet (very deep convolutional NN)

Topology influences
dramatically the loss
surface shape

DenseNet,
a resnet with full
skips connections
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Two reasons to optimize topologies

1. Getting best distribution of building
blocks

* No thumb-rule
* Often qualified as a dark-art

2. Find the bias-variance tradeoff

Total Error

Too simple model - fit error increased

Too complicated model — statistical error
(variance) increased

Variance

Error
Opdimum Model Complexily

Gives a hope for global convexity

Help us saving resources

Bias

5 -
Model Complexity
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Topology Optimization



Topology Optimization

optimization problem
* Parameter space : parametric representation of network
(sl1=400, ks1=5, ps1=32, ..., ti="lIrelu’, ck1="euclidian’)

* Loss function : best precision with parametric trained
network

 All right, doing gradient descent again ?

* Additionnal constraints
- Each point is very expensive to calculate (full training)
— The loss function is not derivable (even numerically)
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Black Box / Zero-Order Optimization

Input parameters ~output
' |

N black-box Ay

X f(X)

Non derivable f function

Search method for finding
new X the best new solution
based on the information about }«g
the objective function f(x)
gathered so far.




Unimportant parameter

Grid and Random Search

Grid Layout Random Layout

Unimportant parameter

Important parameter Important parameter
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Data-driven Sampling

Best algorithm for expensive loss function
Bayesian Optimization
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Bayesian Inference
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The model class : Gaussian Process

 Probabilistic function

* Arbitrary dimension

* Defined by
* mean(x) function in pink
* covariance(Xx)

width of grey bands

 Good fit for known data

e Covariance estimated

as distance function
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Where to search ? Promising points
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Can we express this as a function ?
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Acquisition functions

* Upper Confidence Bound ( )
A(x) = tu(x) + ko (x)

* Esperance of Improvement (El or EOI)

El(r) = E(maz(f(z) = fmae,0))

* Easy to compute on
the whole space

* Rely only on
Gaussian process

Pl

El
UCB
TS

PES
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Bayesian optimization

Jonas Mockus, Bayesian Approach to Global Optimization, 1989
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Limitation: Curse of Dimensionality

A B

d/2
Vhypersphere . 7T /

Vhypercube B d2d_1r(d/2)

* Necessary data amount grows exponentially with
dimension

* Concerns all « neighbouring » fit techniques

* BO is limited in dimension (around 20-30)

* Neural nets are not concerned because their loss
function has a special shape (self-regularization) 3

> ) when d — o0




Implementation & example
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— Jupyter
Notebook

* Runtime encapsulate all
algorithmic complexity

— ease of development

* Based on both Keras & Pytorch

Batch

Integrated Neural Network Automatic Trainer and Evaluator Manager
Condor

Python Console

submit

—" Task submission

Processes
Spawning

Scheduler

Submisson script
(data driven)

training
tasks

Write data/networks
Read results

Reporting

Read data/networks

Y Write results/networks

Shared filesystem (NFS)

Hosting code, results and networks

35



Innhate API

import innate

#connect to scheduler
le=innate.1init("llrinnate.in2p3.fr")

#launch a simple training (can be asynchronous)
res=innate.train_net(ie, task_name,nn_filename, data_filename,
results_folder,nb_epochs=1000)

025 1 e Loss function values

#plot result

print("elapsed time :"))
print("%s"%(res["etime"])) 0151
innate.plot_loss(res)

0.20 A
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0.00 1

0 200 400 GO0 goo0 1000



Grid search topology exploration

between 1 and 2000
neurons

0.9848

* Exploring a 3 layers topology Ima

40.9840

* Inputs : particle clustered
energies per layer

40.9832
* Objective : classifying pions
VS electrons

40.9824

* Precision=1-efficiency (pion
seen as electrons)

0.9816

* 294 points

* Best point : 750 1000 750
with precision 0.985977

ﬁﬁﬁﬁﬁ




Bayesian Optimization

Bayes-opt implementation I

Only 100 points s
_ 20 random pOIHtS " e L 0.984
- 80 fit points s0d] o ®

50 -0.983
@

- Could be optimized (50) ™

1

Best point : 1341 835 1117 =
with precision 0.985696

Same precision with 1/3
points

- 0.982

o 1750 2000 ZRgam)

0.981




Global Performance over
Resource Avaibllity
. T_aking different max size and searching for best
Size
 Max 15 layers
* Bias-variance trade-off highlighted

Evolution of background efficiency folowing the best model found for a given maximal number of neurons

background efficiency
=] = = = = g g N
=] [=] [¥] (%} = [=] M u
wn [=] (%] o (] [=] w (=]
1 1 i i i 1

T
0000000000

max number of neurons
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Perspectives

* For the THINK project
— Create an easily deployable innate package
- Create a tutorial for Bayesian optimization
- to be discussed...

* For Innate
- Implement Parallel Bayesian Optimization

— Try on alternative architecture
* Graph convolution networks
* Auto-encoders

* Keep the trend in a VERY prolific domain !!
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