Neural-network Topology Bayesian
Optimization for Hardware Implementation

| 1,
m “

16
I Conv + RelU Dropout | Pooling I Upsampling | Conv + Sigmoid

Frederic Magniette
Think Project Kickoff

Laboratoire
Leprince-Ringuet

Introduction

32

I conv + RelU Dropout [Pooling [l Upsampling | Conv + Sigmoid

* Hardware implementations
- Synthetizable models
- Ressource management

* Need to optimize the network topology
— Prior implementation
— With respect to precision

* Two approaches
— Pruning: reducing size of trained network
— Optimization: find & train an optimal sized network at the same time

Neural networks

From real to formal neuron

i=1..n

Telodendria / ' §
/il

Nucleug \ J : ‘/\%’ ﬂ"{x)

W

inputs

©0©

k , Axon hillock) Synaptic terminals
Y J-\ * 0= ﬂ'(.l'}
& /, A “‘,‘ <l ﬁ — w3 Z =
Golgi apparatus —4 0“ tp u t

Endoplasmic ' a8
reticulum \ \

Mitochondrion \ Dendrite

\
l p
/ \% Dendritic branches

Wn

McCullock & Pitts — 1943
A logical calculus of the
Ideas Iimmanent in nervous
activity

Mc Cullock Pitts

First artificial neural network

Hidden Layers Output Layer

* Multi-layer perceptron

* Fully connected layers

* Deep Network : >6
layers

-‘\1\ \w

* Paul Werbos — PhD - 1974
- multi-layer perceptron

— gradient retro-propagation algorithm

How does It work

Qutput

Layer
* Transfer function gives
\ non-linearity
e ® * Number of params gives
= precision
e Similar to power series
Forwardpass Backwardpass
y S=rT

Training by back-propagation of error derivative

Convolutional network

\

%
"
5
i
\
A
\ A ;
\,
,
N,

— CAR
— TRUCK
— VAN

?L

|:| — BICYCLE
FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
FEATURE LEARNING CLASSIFICATION

 Network structure :

- Alternance of convolution &
pooling

- Flattering (sometimes called

Yann Lecun & al — 1998
readout)

: Gradient-based learning applied N
- Multi-layer perceptron to document recognition.

Convolution

Source pixel ajk. l
9

o

-~ Convolution kernel k ..) /
% “‘“ﬁhh[‘?mbOSS] 1,7 New pixel value xk,l — E lek_|_7;,l_|_j * kz,j
4

.]%E% HH"“‘*‘HH ’I:,jE[—S..S]Q
/‘HH"‘

o O\
-

T
/
/
! —_
/
/
I/
/
/
o O ¥y
o
1

* Apply kernel on image to create feature _ _
maps Input image Colr::cr)rl]tgllon Feature map
« Shared weights over all input space

(translation invariance) =1l =1 =l
i -1 8 -1
« kernel is learnable k;; o e L

 ldea : creating maps of features (one
kernel per feature)

Pooling

max pooling

20|30

112| 37
12120/ 30| O
8 12| 2| 0 /
34|70 37| 4 average pooling
112[100f 25 | 12 13| 8

79 20

* Reduce the dimensionality of the feature maps

* Move to higher level of abstraction
* Max pool is widely used

Hybrid Neural network

* Modern neural network : assembly of building blocks : neurons,
convolution kernels, poolers

* Parametric : size and number of different layers, choice of transfer
functions

* Training : Optimization of the parameters to minimize the loss
function

10

What for ?

Classification Object Detection Instance

Classification

+ Localization

CAT, DOG, DUCK CAT, DOG, DUCK

J
v
Single object Multiple objects
Regression -1 Outlier
—e— true
1.0 4 —&— RBF-Net
0.5 4
Y =
0.0 1 °
-0.5
) Constrained

10 Anomaly Data

: .' : : : : © i ¢ < < Detection :
0.0 0.2 0.4 0.6 0.8 1.0 X Generat|on 11

Optimization

12

Definition and analytic answer

argmin(() = {y %%, £(y) < f(x)]

* Easy general formulation (Euclid)

* First general answer with differential
calculus
- P(X)=0 and f’(x)>0

- Requires analyticity, derivability and
solvabllity 13

A first heuristic

¢
'I Tha1 — T f' (k)
S (xK)
Crazy ! Coming to me from the sky !

AN

* First heuristic by Newton
— Iterative method to find a zero of the derivative
- Second order method

* Only local derivatives required

* But : Hessian matrix computationally very
expensive

— need a first order solution

Optimization as a Blind Walk

* « Following the slope » method

* Only local knowledge of the field required

* Known as gradient descent algorithm
class

* Proposed by Cauchy in 1847

15

Gradient Descent

oJ 0J (9J>
00, 00, 00,

V.J(O) = <

©=0-—aVJ(O)
o : step size
/ ;; v
/ i
,I’ very small learning too big learning rate:
/ missed the minimum
|
F 1 Precision vs performance
A 16

Gradient Descent & Convexity

06 P
- P i, 0 o 91

03 - -
T e

* Depend on the starting point
— require convexity
* Practical solution : multiple random starts (no guarantee)
* Different class of convexity
* No convexity — no optimization

17

Optimizing Neural Networks

A .
L X W, V%, W, ° % Ligal « Visualizing the loss landscape
of neural nets, 2018, 1712.09913

Learn an algorithm by labelled data
Optimization space : all weights named globally 6

Function to optimize : loss function L(0,data)
Searching for a good minimum in the loss function

18

Why does it work ?

. herical Spi Lecun & al, The loss surface
Perceptron ~ spherical spin- of multi-layer networks,

glass model 2015, 1412.0233

* theoritical results —

- Exponential (in dim) number of \n /
local minima ' J
"

- Good local minimum : /
l0sS(Mingee) — loss(Mmingep) < € I

— Funnel global shape

\f‘\n
» Global minimum is probably | ’
overfitting

* Deep learning (dim is big) gives lm)
better results

19

Optimizers for DNN

Gradient descent implies huge
storage of derivatives

SGD slices the problem input by
iInput :

- slower the convergence
- add variance
— save space

Big diversity of SGD derived algorithm

Adam : a method for stochastic
optimization, Kingma & Ba, 2017,
1412.6980

- Automatic adaptative learning rate per
parameter

- Best performance ever - rules the
world

Gradient Descent

training cost

10

1

®

Stochastic Gradient Descent

MNIST Multilayer Neural Network + dropout

AdaGrad
RMSProp
SGDNesterov
AdaDelta

Adam

i
50

100
iterations over entire dataset

I
150

200

Topology Influence

Adding skips —
connections

Resnet (very deep convolutional NN)

Topology influences
dramatically the loss
surface shape

DenseNet,
a resnet with full
skips connections

21

Two reasons to optimize topologies

1. Getting best distribution of building
blocks

* No thumb-rule
* Often qualified as a dark-art

2. Find the bias-variance tradeoff

Total Error

Too simple model - fit error increased

Too complicated model — statistical error
(variance) increased

Variance

Error
Opdimum Model Complexily

Gives a hope for global convexity

Help us saving resources

Bias

5 -
Model Complexity

22

Topology Optimization

Topology Optimization

optimization problem
* Parameter space : parametric representation of network
(sl1=400, ks1=5, ps1=32, ..., ti="lIrelu’, ck1="euclidian’)

* Loss function : best precision with parametric trained
network

 All right, doing gradient descent again ?

* Additionnal constraints
- Each point is very expensive to calculate (full training)
— The loss function is not derivable (even numerically)

24

Black Box / Zero-Order Optimization

Input parameters ~output
' |

N black-box Ay

X f(X)

Non derivable f function

Search method for finding
new X the best new solution
based on the information about }«g
the objective function f(x)
gathered so far.

Unimportant parameter

Grid and Random Search

Grid Layout Random Layout

Unimportant parameter

Important parameter Important parameter

26

Data-driven Sampling

Best algorithm for expensive loss function
Bayesian Optimization

27

Bayesian Inference

-"'
KA
S
-. *
I I l‘.
In | BT

| | 1IKeI1NO0Oo ita | T101r
Statistical \J\‘/ ecurence
mEthOd tO infer _— 1heorem If new data
a generative ZANE
mOdeI from data osterior Distribution
Model Plausibility Data Likelihood Pri
— posterior o

a p(data|model).p(model)

p(model|data) =

p(data)
\ Normalization 28

The model class : Gaussian Process

 Probabilistic function

* Arbitrary dimension

* Defined by
* mean(x) function in pink
* covariance(Xx)

width of grey bands

 Good fit for known data

e Covariance estimated

as distance function

29

Where to search ? Promising points

Y

N_

|

-2 0 2 4

Can we express this as a function ?

30

Acquisition functions

* Upper Confidence Bound ()
A(x) = tu(x) + ko (x)

* Esperance of Improvement (El or EOI)

El(r) = E(maz(f(z) = fmae,0))

* Easy to compute on
the whole space

* Rely only on
Gaussian process

Pl

El
UCB
TS

PES
31

Bayesian optimization

Jonas Mockus, Bayesian Approach to Global Optimization, 1989

t=3

- -
o o
= e
b 2
W © n
(=] (=]
=
o o
= =
O O
= c
5 S
V= W
c c
o o
S =
£ w
g_ =
g Ne_xt g
< point <

pd

New
observation

Limitation: Curse of Dimensionality

A B

d/2
Vhypersphere . 7T /

Vhypercube B d2d_1r(d/2)

* Necessary data amount grows exponentially with
dimension

* Concerns all « neighbouring » fit techniques

* BO is limited in dimension (around 20-30)

* Neural nets are not concerned because their loss
function has a special shape (self-regularization) 3

>) when d — o0

Implementation & example

34

— Jupyter
Notebook

* Runtime encapsulate all
algorithmic complexity

— ease of development

* Based on both Keras & Pytorch

Batch

Integrated Neural Network Automatic Trainer and Evaluator Manager
Condor

Python Console

submit

—" Task submission

Processes
Spawning

Scheduler

Submisson script
(data driven)

training
tasks

Write data/networks
Read results

Reporting

Read data/networks

Y Write results/networks

Shared filesystem (NFS)

Hosting code, results and networks

35

Innhate API

import innate

#connect to scheduler
le=innate.1init("llrinnate.in2p3.fr")

#launch a simple training (can be asynchronous)
res=innate.train_net(ie, task_name,nn_filename, data_filename,
results_folder,nb_epochs=1000)

025 1 e Loss function values

#plot result

print("elapsed time :"))
print("%s"%(res["etime"])) 0151
innate.plot_loss(res)

0.20 A

0.10 -

005 1

0.00 1

0 200 400 GO0 goo0 1000

Grid search topology exploration

between 1 and 2000
neurons

0.9848

* Exploring a 3 layers topology Ima

40.9840

* Inputs : particle clustered
energies per layer

40.9832
* Objective : classifying pions
VS electrons

40.9824

* Precision=1-efficiency (pion
seen as electrons)

0.9816

* 294 points

* Best point : 750 1000 750
with precision 0.985977

ﬁﬁﬁﬁﬁ

Bayesian Optimization

Bayes-opt implementation I

Only 100 points s
_ 20 random pOIHtS " e L 0.984
- 80 fit points s0d] o ®

50 -0.983
@

- Could be optimized (50) ™

1

Best point : 1341 835 1117 =
with precision 0.985696

Same precision with 1/3
points

- 0.982

o 1750 2000 ZRgam)

0.981

Global Performance over
Resource Avaibllity
. T_aking different max size and searching for best
Size
 Max 15 layers
* Bias-variance trade-off highlighted

Evolution of background efficiency folowing the best model found for a given maximal number of neurons

background efficiency
=] = = = = g g N
=] [=] [¥] (%} = [=] M u
wn [=] (%] o (] [=] w (=]
1 1 i i i 1

T
0000000000

max number of neurons

3Y

Perspectives

* For the THINK project
— Create an easily deployable innate package
- Create a tutorial for Bayesian optimization
- to be discussed...

* For Innate
- Implement Parallel Bayesian Optimization

— Try on alternative architecture
* Graph convolution networks
* Auto-encoders

* Keep the trend in a VERY prolific domain !!

40

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40

