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WHAT PROBLEM DO WE
NEED TO SOLVE?



Timelines and jargon
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LHCDb real-time architecture 2021

| LHC bunch crossing (30MHz)_

5TB/s DETECTOR READOUT
HLT1 PARTIAL RECO = SEEEEE |
I
P
0.1-0.2 TB/S Real-time alignment .
and calibrations
HLT2 FULL RECO e
Offline reconstruction and
5% FULL
~ 1 0 G B/S ‘ associated processing

85% TURBO &

real-time analysis User analysis

Offline reconstruction and
associated processing

10% CALIB




LHCDb real-time architecture 20307
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Challenges & evolution of DAQ

LHCb Upgrade | DAQ
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Use of Al/ML today in LHCDb

1. Many trigger lines used ML classifiers in Run 2 — expected that most will use ML
classifiers in Run 3. Typically for classification at our working point neural nets gain
little over BDTs.

2. Main particle identification and flavour tagging algorithms are based on neural nets,
both for charged and neutral particles

3. Neural nets used in parts of the track reconstruction to discriminate between good
and fake hit combinations, speeds up reconstruction significantly

Summary: very extensive use, well developed framework for deployment on CPU.
Deployment on GPU is in a much less advanced stage but no “real” difference with
respect to CPU, simply we started using GPUs much later so framework less mature

Some attempts to have full reconstruction algorithms replaced by neural nets, but so
far none have been completely successful — usable reconstruction algorithms are still a
mixture of classical Kalman filter and combinatorics based steps and neural nets in
certain specific parts. But this may change in the future.

Key point on CPU/GPU: all detector data available to all algorithms! Very different on FPGA



Where could we use Al on FPGA?

LHCb Upgrade | DAQ
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No inherent latency in system — so FPGAs have to compete on cost-benefit with GPU/CPU



LHCb geometry constraints

Want a problem which is inherently local, to minimize FPGA to FPGA communication
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Potential “local” problems continued

RICH2 HPD Panels

RICH detectors — classic image recognition problem. However very high hit density. Could be
interesting if we can project in time with O(10ps) precision to reduce the pileup




Why not tracking?
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LHCb’s magnetic field means you have to bring information from different trackers together in a

highly non-local way to find tracks. Could find stubs in individual pieces of the tracker, but
unconvinced this will ever be cost-effective compared to GPU/CPU if priced fairly.




Concrete projects

1. Understand the way to optimally use hybrid (FPGA, GPU, x86) architectures
considering the dataflow as a whole.

2. Integration of as much data processing as possible into the FPGA detector readout,
ettiquetage des donnees, reconstruction des objets locaux (e.g. dans calorimetre).
Develop a coherent approach to the readout of all subdetectors.

3. Can machine learning algorithms deployed on FPGA give the same physics faster on
highly parallel architectures?

If we want to have a useful outcome, we have to consider the whole dataflow from the
start, and embed the proposed FPGA algorithms within a highly parallel CPU/GPU
processing scheme. Work together with the detector readout, not against it!

There are even people who have ideas of using Ethernet directly from the front-end
ASICS to the server farm — in which case no “free” backend readout FPGAs, and price-
performance becomes even more complicated.
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