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Disclaimer:
this talk is by no means a comprehensive view of what is done in ATLAS
| present a selection of ideas with preliminary results



ATLAS TDAQ Architecture

e 3 Main stages where Artificial
intelligence can be used to improve
trigger performance

1. Preprocessing of raw detector output
a. E.g. Computation of energy

deposits in the calorimeters
2. Identification of the presence
interesting events/objects at L1
(hardware) trigger
a. E.qg. Identifying the presence of
muons above a certain pT
threshold
3. Reconstruction and identification of
objects at the High-Level-Trigger
(software)
a. E.g. Fast electromagnetic shower
pre-selection to improve CPU time
b. Hardware acceleration can be
used
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LAr Calorimeter Data Processing using RNNs 3
| More details in _I_

e New backend board to
compute energy deposited e Wﬁ'
in the calorimeter - ° g — 5
o Based on high-end ocamnercon [ =i &
FPGAs ' )
o Stratix 10 or Agilex J LIl 5 )
e Identify BCID (time) of 1 E) —)
collision and compute the —

deposited energy ' éﬁ e || [p—
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e Total throughput: ~300
Th/s rEEp
o =

e Electronic signal shaped (bi-polar shape) and
digitized at 40 MHz

e Samples (ADCs) around the peak used to compute
the deposited energy and detect the deposited
time
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https://cds.cern.ch/record/2302626?ln=en

Special Run 2 Optimization studies
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Deep Learning A-Z
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https://cds.cern.ch/record/2285582/
https://cds.cern.ch/record/2709549/files/ATL-LARG-PROC-2020-003.pdf

Special Run 2 Optimization studies 5
PRODUCT LINE AGF 004 AGF 006 AGF 008 AGF 012 AGF 014 AGF 022 AGF 027
Logic elements (LEs) 392,000 573,480 764,640 1,200,000 1,437,240 2,200,000 2,692,760
Adaptive logic modules (ALMs) 132,881 194,400 259,200 406,780 487,200 745,763 912,800
ALM registers 531,525 777,600 1,036,800 1,627,119 1,948,800 2,983,051 3,651,200
eSRAM memory blocks 0 0 0 2 2 0 0
. eSRAM memory size (Mb) 0 0 0 36 36 0 0
g M20K memory blocks 1,900 2,844 3,792 5,568 7,110 11,616 13,272
3 | M20K memory size (Mb) 38 56 74 110 139 210 259
& MLAB memory count 6644 9720 12960 20,338 24,360 32,788 45,640
MLAB memory size (Mb) 4.3 6.2 8.3 13 15.6 21 29.2
Variable-precision digital signal processing (DSP) blocks 1,640 1,640 2,296 4,000 4,510 6,250 8,736
18 x 19 multipliers 2,300 3,280 4,592 8,000 9,020 12,500 17,056
?}r:%g;)p;rjecwson or half-precision tera floating point operations per second 17/34 25/50 35/69 60/120 7.0/139 04/188 11.8/236

Prototype in development at CPPM

e Order of ~100 or ~50 input fibers per FPGA
with 12 channels each
o Same order for the number of NNs
should be implemented in the FPGA
o Depends on serialisation capacity
m Larger (x[2-3]) latency with respect
to phase 1 (order of 300 ns can be
available for this processing)
e Need FPGA with maximum logic and DSPs
o X[5-7] with respect to phase 1 available
e Very important to reduce (prune) the NN and
to share logic between channels
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More details in [l

Muon Identification at L1 Using CNN
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e Transform muon hits into a 2D picture Implementation ongoing on Virtex7 FPGA using

o CNN used to detect muon patterns in
. his 4 ml
the picture
O 5D Output: pT and eta Of the 2 Ieadlng . Frequency=500MHz
cycles =660 Latency =1.2us
muons and Number Of muons Dense NN Succesfully

implemented
DPS =207

e NN with 500K parameters
o Tested with 32 bit floating point
precision and ternary NN (2 bits, up to cyeles *485 Latency=0.95us
a factor 16 reduction) ke

Frequency=500MHz

Ternary Dense NN implemented

DPS =102


https://indico.cern.ch/event/766872/contributions/3358004/attachments/1831829/3000073/IML_2019.pdf

Muon Identification at L1 Using CNN
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Electromagnetic Shower Selection Using MLP 8

More details in |l
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e Goal: Improve electron/photon pre-selection at the HLT Single hidden layer fully
level to reduce CPU consumption connected (dense) MLP
o Idea can be ported to L1 (hardware) trigger to improve
L1 trigger rates and efficiency
e Idea: Energy sum in rings as input to a NN
o Assume perfect Cone for the shower shape

1.4 = ATLAS Preliminary
Data 2017, s = 13TeV, JLm =2871" v without Ringer 7|

ILT_e28_Ihtight_nod0_ivarloose_L1EM24VHIM O with Ringer

HLT_ -
0.8 o7 -

Trigger Efficiency
N
I

»

o Takes into account longitudinal shape (sums per layer) ¢ . E

No trigger efficiency loss by applying a selection _ o E

e Should parametrise as function of ET and eta ot E
o Non regularities in the detector H ATV TJONTTRUN JUONN SURY SR IORROVY. |

Offlme |solated electron E; [GeV]

e Many small NN (MLP) for different topologies
o Implementation in FPGAs (at L1) to be investigated


https://indico.cern.ch/event/766872/contributions/3357990/attachments/1831594/2999695/20190417_iml_trigegamma_neuralringer.pdf

Conclusion
e

Using Artificial intelligence at early processing stages (mainly

trigger) of data processing in ATLAS is in its infancy period

o Great opportunity for R&D and new ideas

Few projects ongoing with preliminary ideas and results

o We should have clearer results in the next months/years

Preparation for phase II ongoing now

o Hardware mostly fixed but still some time for few changes

o Need to have a clearer view on the needed for possible NN based
algorithms as soon as possible

In parallel industrial development are in fast expansion in this

domain

o Should follow this expansion and maybe contribute to it

Plan to test on LASP boards soon

o RNN and LSTM for LAr signal processing

o But can test also other architectures like CNNs and simple MLP.



