

UNIVERSITY OF

BSM at the FCC-hh: Supersymmetry

Monica D'Onofrio University of Liverpool

FCC-France workshop 15/5/2020

Supersymmetry: status of the art

- SUSY is one of the main focus of the ATLAS and CMS programmes since Run 1.
- Searches cover strong and electroweak particles production in R-parity conserving (RPC) and violating (RPV) SUSY models, considering prompt and nonprompt decays
- Inclusive and dedicated searches with thousands of signal regions are performed → results can be generalized

	Model	S	ignatur	e ∫	<i>L dt</i> [fb [−]	Ma	iss limit					Reference
,	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$	0 e, μ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 36.1	 <i>q̃</i> [10× Degen.] <i>q̃</i> [1×, 8× Degen.] 	0.43	0.71	1	1.9	${f m}({ ilde \chi}^0_1){<}400~{ m GeV} \ {f m}({ ilde \chi}^0_1){=}5~{ m GeV}$	ATLAS-CONF-2019-040 1711.03301
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ĝ ĝ		Forbidden		2.35 1.15-1.95	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
200	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e, μ ee, μμ	4 jets 2 jets	E_T^{miss}	36.1 36.1	ĩg ĩg			1.2	1.85	$\mathfrak{m}(\tilde{\chi}_1^0) \! < \! 800 \mathrm{GeV}$ $\mathfrak{m}(\tilde{g}) \! \cdot \! \mathfrak{m}(\tilde{\chi}_1^0) \! = \! 50 \mathrm{GeV}$	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 <i>e</i> , μ SS <i>e</i> , μ	7-11 jets 6 jets	$E_T^{\rm miss}$	36.1 139	ğ ğ			1.15	1.8	$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	1708.02794 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \!\rightarrow\! t t \tilde{\chi}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	ĩg			1.25	2.25	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1 {\rightarrow} b\tilde{\chi}_1^0/t\tilde{\chi}_1^\pm$		Multiple Multiple Multiple		36.1 36.1 139	$ar{b}_1$ Forbidden $ar{b}_1$ $ar{b}_1$	Forbidden Forbidden	0.9 0.58-0.82 0.74		$m(\tilde{\chi}_{1}^{0})=$ $m(\tilde{\chi}_{1}^{0})=200 G$	$m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ $300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=BR(b\tilde{\chi}_{1}^{+})=0.5$ $eV, m(\tilde{\chi}_{1}^{+})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{+})=1$	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
ion	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1 {\rightarrow} b\tilde{\chi}^0_2 {\rightarrow} bh\tilde{\chi}^0_1$	0 <i>e</i> , <i>µ</i>	6 <i>b</i>	$E_T^{\rm miss}$	139	$ar{b}_1$ Forbidden $ar{b}_1$	0.23-0.48	(0.23-1.35	$\Delta m (\tilde{\chi}_2^0 \Delta m)$	$(\tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$ $(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$	1908.03122 1908.03122
product	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0 \text{ or } t\tilde{\chi}_1^0$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$	0-2 <i>e</i> , μ 1 <i>e</i> , μ	0-2 jets/1-2 3 jets/1 b	E_T^{miss} E_T^{miss}	36.1 139	τ̃ ₁ τ̃ ₁	0.44-0.	1.0 59	1.10		$m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=400 \text{ GeV}$ $m(\tilde{\omega}_{1})=900 \text{ GeV}$	1506.08616, 1709.04183, 1711.1 ATLAS-CONF-2019-017
direct	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 \partial v, \tilde{\tau}_1 \rightarrow \tilde{\tau}_0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e, μ	2 jets/1 b 2 c mono-iet	E_T E_T^{miss} E_T^{miss}	36.1 36.1		0.46 0.43	0.85	1.10		$m(\tilde{\tau}_{1})=000 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\tau}_{1},\tilde{c})-m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}$ $m(\tilde{\tau}_{1},\tilde{c})-m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}$	1805.10178 1805.01649 1805.01649 1711.03301
	$ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z $	1-2 e,μ 3 e,μ	4 b 1 b	E_T^{miss} E_T^{miss}	36.1 139	<i>ī</i> ₂ <i>ī</i> ₂	Forbidden	0.32-0.88 0.86		$m(\tilde{\chi}_{1}^{0})$ $m(\tilde{\chi}_{1}^{0})$ =	=0 GeV, $m(\tilde{t}_1) \cdot m(\tilde{t}_1^0) = 180$ GeV 360 GeV, $m(\tilde{t}_1) \cdot m(\tilde{t}_1^0) = 40$ GeV	1706.03986 ATLAS-CONF-2019-016
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e, μ ee, μμ	≥ 1	E_T^{miss} E_T^{miss}	36.1 139	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.205		0.6	_		$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$	1403.5294, 1806.02293 ATLAS-CONF-2019-014
direct	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{+}$ via WW $\tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0}$ via Wh $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{+}$ via $\tilde{\ell}_{L}/\tilde{\nu}$ $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0}$	2 e, μ 0-1 e, μ 2 e, μ 2 τ	2 <i>b</i> /2 γ	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	139 139 139 139		0.42	0.74			$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{0})=70 \text{ GeV}$ $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{+})+m(\tilde{\chi}_{1}^{0}))$ $m(\tilde{\chi}_{1}^{0})=0$	1908.08215 ATLAS-CONF-2019-019, 1909.0 ATLAS-CONF-2019-008 ATLAS-CONF-2019-018
Ŭ	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, μ 2 e, μ	0 jets ≥ 1	E_T^{miss} E_T^{miss}	139 139	<i>t̃</i> <i>t̃</i> 0.256		0.7			$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
	$HH, H \rightarrow hG/ZG$	0 e, μ 4 e, μ	$\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 36.1	 <i>H</i> 0.13-0.23 <i>H</i> 0.3 		0.29-0.88			$\begin{array}{l} BR(\tilde{X}_1^0 \to h\tilde{G}) = 1 \\ BR(\tilde{X}_1^0 \to Z\tilde{G}) = 1 \end{array}$	1806.04030 1804.03602
icles	$\operatorname{Direct} \tilde{\chi}_1^* \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1	$ \tilde{\chi}_{1}^{\pm} $ 0.15	0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
part	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple Multiple		36.1 36.1	\tilde{g} $\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$				2.0 2.05 2.4	$m(\tilde{\chi}_1^0)$ =100 GeV	1902.01636,1808.04095 1710.04901,1808.04095
>	$ \begin{array}{l} LFV \ pp {\rightarrow} \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} {\rightarrow} e\mu/e\tau/\mu\tau \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} {\rightarrow} WW/Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} {\rightarrow} qq \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} {\rightarrow} qqq \end{array} $	<i>eμ,eτ,μτ</i> 4 <i>e</i> , μ 4	0 jets -5 large- <i>R</i> je Multiple	E_T^{miss} ts	3.2 36.1 36.1 36.1	\tilde{v}_{τ} $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ $\tilde{\chi}_{2}^{\pm} = [m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}, 1100 \text{ GeV}]$ $\tilde{g} = [\chi'_{12}=2e-4, 2e-5]$		0.82	1.33 1.3 5	1.9 1.9 2.0	λ'_{311} =0.11, $\lambda_{132/133/233}$ =0.07 m $(\tilde{\chi}^0_1)$ =100 GeV Large λ''_{112} m $(\tilde{\chi}^0_1)$ =200 GeV, bino-like	1607.08079 1804.03602 1804.03568 ATLAS-CONF-2018-003
	$\begin{split} & \vec{t} \vec{t}, \vec{t} \! \rightarrow \! t \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow t b s \\ & \vec{t}_1 \vec{t}_1, \vec{t}_1 \! \rightarrow \! b s \\ & \vec{t}_1 \vec{t}_1, \vec{t}_1 \! \rightarrow \! d \ell \end{split}$	2 e,μ 1 μ	Multiple 2 jets + 2 b 2 b DV		36.1 36.7 36.1 136	$\tilde{g} = [\lambda''_{323}=2e-4, 1e-2]$ $\tilde{t}_1 = [qq, bs]$ $\tilde{t}_1 = [1e-10 < \lambda'_{214} < 1e-8, 3e-10 < \lambda'_{11}]$	0.55 0.42 0 <3e-9]	5 1.0 0.61 1.0	5 0.4-1.45	5	m($\tilde{\chi}_{1}^{0}$)=200 GeV, bino-like BR($\tilde{i}_{1} \rightarrow be/b\mu$)>20% BR($\tilde{i}_{1} \rightarrow q\mu$)=100%, cos θ ,=1	ATLAS-CONF-2018-003 1710.07171 1710.05544 ATLAS-CONF-2019-006
									1			ļ

Searches for SUSY are relevant well beyond SUSY itself!

FCC-hh prospects on SUSY: outline

- Many variants to be considered (MSSM, NMSSM, gauge mediation, stealth ...)
 - Phenomenology depends on the model and on the sparticle mass hierarchy
- As indication of the potential, consider benchmarks often simplified models
 - Strong production (gluinos, 1st and 2nd generation squarks, top squarks): where the energy reach counts the most
 - Weak production (charginos, neutralinos, sleptons): rarer processes, depending on model parameters difficult but not impossible, also in 'compressed' scenarios.
- Targeted signatures depend on assumptions. In the following, we consider direct searches for:
 - RPC SUSY: characterised by the presence of missing transverse momentum (E_T^{Miss}); lightest neutralino is the LSP in most cases. Role of EWK-sector mixing highlighted (bino/wino/higgsino) where relevant.
 - (an example of) RPV SUSY OR highly compressed RPC SUSY spectra: leading to feebly interacting or non-prompt signatures; specialised techniques are used → very difficult to assess feasibility at these early stages
- Various sources:

3

- FCC Volume 1 book and references therein: <u>CERN-ACC-2018-0056.pdf</u>, <u>https://arxiv.org/pdf/1606.00947.pdf</u>
- European Strategy Briefing book: <u>https://arxiv.org/abs/1910.11775</u>
 - current LHC searches/HL-LHC studies used for some of the FCC-hh results where not yet available

RPC Gluinos: current status

Broad range of searches at current LHC experiments exploring a variety of final states and models

... and more

To remark:

Gluinos below 1-1.2 TeV excluded for any $quark(+lepton)+E_T^{Miss}$ decay mode

Up to 2 TeV for GMSB-like SUSY models as well as for low LSP masses

Stringent constraints for gluino into 3^{rd} generation quarks (tt χ^0 and bb χ^0)

Monojet searches cover also low $\Delta M(\mbox{gluino},\,\chi^0)$ - down to 5-10 GeV

@ HL-LHC, gluino masses up to 3.2 TeV
will be excluded depending on model,
with chance for discovery up to ~ 3 TeV

RPC Gluinos: FCC-hh

Improvements on SM background estimates and uncertainties achieved in Run 2 analysis <u>not taken</u> into account

Projections using ColliderReachTool : HL \rightarrow 1.5 TeV; HE \rightarrow 2.6 TeV; FCC-hh: 7.5 TeV

RPC gluinos: summary

Fig. 8.6: Gluino exclusion reach of different hadron colliders: HL- and HE-LHC [443], and FCC-hh [139, 448]. Results for low-energy FCC-hh are obtained with a simple extrapolation.

(*) indicates projection using parton lumi rescaling (ColliderReachTool)

Summary of 1st and 2nd generation squarks

All Colliders: squark projections

(R-parity conserving SUSY, prompt searches)

Top squarks: current status

Reach beyond 1 TeV for low LSP mass, covering LSP mass hypothesis up to ~ 400 GeV

4 body decays

15/5/20

Examples of prospects for top squarks

Analyses for large and medium ΔM (stop, N1): here, using reconstructed top and b-jets

BSM at the FCC-hh: SUSY, Monica D'Onofrio

9

Summary: RPC Top squark

All Colliders: Top squark projections

(R-parity conserving SUSY, prompt searches)

(*) indicates projection of existing experimental searches

(**) extrapolated from FCC-hh prospects

10

 ϵ indicates a possible non-evaluated loss in sensitivity

15/5/20

EWK SUSY Phenomenology

- Mass and hierarchy of the four neutralinos and the two charginos, as well as their production cross sections and decay modes, depend on the M_1 , M_2 , μ (bino, wino, higgsino) values and hierarchy
 - EWK phenomenology broadly driven by the LSP and Next-LSP nature
 - Examples of classifications (cf: arXiV: <u>1309.5966</u>)

Used as benchmarks:

• <u>Bino LSP, wino-bino cross sections</u> (1) Mass (χ^{\pm}_1) = Mass (χ^0_2) (2) $\chi^+_1\chi^-_1$ and $\chi^{\pm}_1\chi^0_2$ processes

 $\sigma_{W}(\chi^{\pm}_{1}\chi^{0}_{2}) \sim 2 \sigma_{W}(\chi^{\pm}_{1}\chi^{-}_{1})$

- <u>Higgsino-LSP, higgsino-like cross sections</u>

 (1) Small mass splitting χ⁰₁, χ[±]₁, χ⁰₂
 (2) Consider triplets for cross sections
 (3) Polo of high multiplicity poutralings and
 - (3) Role of high-multiplicity neutralinos and charginos also relevant

 $\sigma_{\mathsf{H}}(\chi^{\pm}_{1}\chi^{0}_{2} + \chi^{+}_{1}\chi^{-}_{1} + \chi^{\pm}_{1}\chi^{0}_{1})$ $< 0.7-0.5 \sigma_{\mathsf{W}}(\chi^{\pm}_{1}\chi^{0}_{2})$

charginos and neutralinos @ FCC-hh

Searches in multilepton final state events + missing E_T

3L and 2L (opposite-sign or same-sign different flavour)

 $\chi_2^{0,\pm} \to \chi_1^{0,\pm} Z/h, \quad \chi_2^{0,\pm} \to \chi_1^{\pm,0} W,$

 $W \to \ell \nu, \quad Z \to \ell^+ \ell^-, \quad h \to ZZ^*, WW^* \to 4\ell, 2\ell 2\nu$

Results presented depending on the nature of the next-LSP and LSP

- Higgsino NLSP and Bino LSP (Higgsino-Bino) : $M_2 \gg \mu > M_1$.
- Higgsino NLSP and Wino LSP (Higgsino-Wino) : $M_1 \gg \mu > M_2$.
- Wino NLSP and Higgsino LSP (Wino-Higgsino) : $M_1 \gg M_2 > \mu$.

BSM at the FCC-hh: SUSY, Monica D'Onofrio

12

 2σ exclusion bounds

charginos and neutralinos @ FCC-hh

- Searches in multilepton final state events + missing E_T

3L and 2L (opposite-sign or same-sign different flavour)

 $\chi_2^{0,\pm} \to \chi_1^{0,\pm} Z/h, \quad \chi_2^{0,\pm} \to \chi_1^{\pm,0} W,$

 $W \to \ell \nu, \quad Z \to \ell^+ \ell^-, \quad h \to ZZ^*, WW^* \to 4\ell, 2\ell 2\nu$

Results presented depending on the nature of the next-LSP and LSP - Wino NLSP and Bino LSP (Wino-Bino) : $\mu \gg M_2 > M_1$.

In summary: @ FCC-hh, results for winolike to bino-like (higgsino-like) processes show sensitivity up to 4 (3) TeV with 3/ab

Note: this and other results are for a single experiment

Wino-like cross section: $\chi^{\pm}_{1}\chi^{0}_{2}$

15/5/20

Higgsino-like EWK processes

Higgsino-like (i.e. large higgsino component but not pure): $\rightarrow \Delta M(NLSP, LSP) \sim O(GeV)$

Pure-higgsino: $\rightarrow \Delta M \sim 160 \text{ MeV}$ - targeted by disappearing track analyses

Higgsino-like EWK processes

Higgsino-like EWK processes

Higgsino-like (i.e. large higgsino component but not pure): $\rightarrow \Delta M(NLSP, LSP) \sim O(GeV)$

Pure-higgsino:

 $\rightarrow \Delta M \sim 160 \text{ MeV}$ - targeted by disappearing track analyses

Disappearing track signatures

p

n

HL-LHC

Thermal Higgsino/Wino dark matter

- Thermal freeze-out mechanism provides a cosmological clue for the observed DM density
- Most straightforward example of a DM thermal relic: massive particle with EW gauge interactions only
- Spin-1/2 particles transforming as doublets or triplets under SU(2) symmetry, usually referred to as Higgsino and Wino
 - Although they are not really "SUSY" related phenomenology is equivalent

FCC-hh could conclusively test the hypothesis of thermal DM in both scenarios!

Conclusions

- Searches for SUSY will remain a priority for HEP for some time
- The discovery potential for strongly produced SUSY particles such as gluino, squarks and in particular top squarks is dominated by FCC-hh, which allow highest mass reach
- The EWK SUSY sector could be particularly challenging, but mixture of 'classic' signatures and exploitation of monojet-like and soft-lepton final states might allow very good reach
- Disappearing track analysis could be exploited for higgsino / wino Dark Matter models
- FCC-hh has certainly a high potential for EWK particles with masses up to 3-4 TeV

can conclusively test the hypothesis of thermal DM in both scenarios!

15/5/20

Back up

22

1st and 2nd generation squarks

Projections available for HL-LHC, 33 TeV and 100 TeV

Current LHC reach depend on final state signature. Comparisons for jets+E_T^{Miss} final states:

m_a [GeV]

Indirect stop limits

- leading indirect effect of top squarks is that they modify some of the properties of the Higgs boson, i.e. interactions between the Higgs boson and gluons and also between the Higgs boson and the photon.
- None of these interactions exist at the classical level hence they are particularly sensitive to new strongly coupled degrees of freedom like top squarks.
- combined projected indirect constraints on stops from LHC Higgs measurements are dominated by the FCC-ee measurements.
- Dedicated studies at FCC-hh, using e.g. H+jet production at high invariant mass, could further reveal the structure of the indirect corrections to the Higgs interactions.

Compressed scenarios EWK

- Decay branching ratios for a 400 GeV charged Higgsino as a function of Δm = and μ < 0

Sleptons reach

FCC-hh could push boundaries up to 3-4 TeV (as for $\tilde{e}, \tilde{\mu}$) (studies not yet performed. no 2D projections attempted)