Higgs self coupling and Higgs rare decays at FCC-hh

Elisabeth Petit CPPM

Workshop FCC-France 15th of May 2020

Introduction

O(100) more Higgs produced at FCC-hh (100 TeV, 30 ab⁻¹) than at HL-LHC (14 TeV, 6 ab⁻¹)

- High precision measurements of the Higgs boson couplings: from a few % precision to <1% precision</p>
- Opening measurements to rare processes:
 - HH(H) production
 - rare decays: $Z\gamma$, $\mu\mu$, light quarks, invisible

Main references

- Higgs and Electro-weak symmetry breaking at the FCC-hh (CERN-ACC-2018-0045)
- FCC Physics Opportunities Future Circular Collider Conceptual Design Report Volume 1 (Eur. Phys. J. C (2019) 79:474)
- Future Circular Collider European Strategy Update Documents (CERN-ACC-2019-0007)
- Measuring the Higgs self-coupling via Higgs-pair production at a 100 TeV p-p collider (arxiv:2004.03505)
- ♦ Higgs Boson studies at future particle colliders (JHEP01 (2020) 139)
- Higgs Physics at the HL-LHC and HE-LHC (CERN-LPCC-2018-04)

Higgs self-coupling

Self-couplings, introduction

- λ^{SM} known from v.e.v and Higgs mass: $\lambda^{\text{SM}} = \frac{m_H^2}{2 \cdot v^2} \approx 0.13$
- BSM effects could change $\lambda \Rightarrow$ define deviations of tri-linear and quartic terms
- Concentrate mainly on tri-linear coupling: $\kappa_{\lambda} = \kappa_3 = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}$
 - what we can deduce from precision on κ_{λ} :

50% sensitivity: establish that h³≠0 at 95%CL100%20% sensitivity: 5σ discovery of the SM h³ coupling100%5% sensitivity: getting sensitive to quantum corrections to Higgs potential3

Di-Higgs production: pp colliders

- Main production mode: ggF
 - cross-section *30 between HL-LHC and FCC-hh
 - destructive interference between triangle and box diagrams $\Rightarrow \sigma(HH)/\sigma(H) = 0.1\%$

 $g \gamma \gamma \gamma \gamma$

Self-couplings through

- total HH cross section
- diff. cross section $d\sigma/dm_{HH}$:

General strategy

- ♦ New result presented recently 2004.03505
- Main channels: $b\overline{b}\gamma\gamma$, $b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$
- Maximise the cross-section precision and use of variables sensitive to κ_{λ}
 - heavy use of BDT selections
- Use of Delphes simulation tool (parameterised detector response)
 - object efficiencies extrapolated from HL-LHC
 - pile-up = 1000 (not simulated but assume new techniques to cope with it)

• Several systematic uncertainty scenarios:

syst. I syst. I		syst. III	Processes	HL-LHC (S2)
0.5%	1%	2%	single H, HH, $t\bar{t}$	1%
1%	2.5%	5%	single H, HH, $t\bar{t}$	5%
0.5%	1%	2%	single H, HH	2%
0.5%	1%	2%	single H, HH,	0.5%
			single V, VV,	
			$t\bar{t}V, t\bar{t}VV$	
0.5%	1%	1.5%	Н	~2%
0.5%	1%	1.5%	Н	
0.5%	1%	2%	single H, HH,	~1%
			single V, VV,	
			$t\bar{t}, t\bar{t}V, t\bar{t}VV$	
0.5%	1%	1.5%	HH	~2-3%
	syst. I 0.5% 1% 0.5% 0.5% 0.5% 0.5%	syst. I syst. II 0.5% 1% 1% 2.5% 0.5% 1% 0.5% 1% 0.5% 1% 0.5% 1% 0.5% 1% 0.5% 1% 0.5% 1% 0.5% 1% 0.5% 1% 0.5% 1% 0.5% 1%	syst. I syst. II syst. III 0.5% 1% 2% 1% 2.5% 5% 0.5% 1% 2% 0.5% 1% 2% 0.5% 1% 2% 0.5% 1% 2% 0.5% 1% 2% 0.5% 1% 1.5% 0.5% 1% 2% 0.5% 1% 1.5% 0.5% 1% 2%	syst. I syst. II syst. III Processes 0.5% 1% 2% single H, HH, tī 1% 2.5% 5% single H, HH, tī 0.5% 1% 2% single H, HH, tī 0.5% 1% 2% single H, HH, 0.5% 1% 2% single H, HH, 0.5% 1% 2% single H, HH, 0.5% 1% 2% single V, VV, 0.5% 1% 1.5% H 0.5% 1% 2% single V, VV, 0.5% 1% 2% Single H, HH, 0.5% 1% 1.5% H 0.5% 1% 2% single V, VV, 0.5% 1% 2% single V, VV, 0.5% 1% 2% single V, VV, 0.5% 1% 1.5% HH

HH combined results

- ♦ 1D maximum likelihood fits of the BDT discriminants
- 68% CL uncertainty on κ_{λ} :

bbyy	bbyy bbττ		combined		
3.5-8.5%	12-13%	24-26%	2.9-5.5%		

 driven by the bbγγ channel, limited by systematics

- A few remarks:
 - small impact of (eg QCD) background relies on the fact that the data will help to constrain the normalisations
 - precision achievable only if good measurements of other couplings: 1% uncertainty on $y_t \Rightarrow 5\%$ uncertainty on κ_{λ}
 - uncertainty on $\sigma_{\rm HH}$: 0.5%-1.5% (~5% today): needs at least one order beyond NLO with full top-mass dependence, possibly beyond N³LO in the infinite top-mass limit
- Evolution with luminosity:
 - 10% precision achievable with 3 ab⁻¹ of data, ie a 3-5 year early run

Comparison of Future Colliders

- 68% CL uncertainties on κ_{λ} with di-Higgs and single-Higgs:
 - all combined with HL-LHC

Higgs@FC WG November 2019

Quartic couplings

- mild dependence of $\sigma_{_{HHH}}$ with $\kappa_{_4}$
- Studies with
 - $-b\overline{b}b\overline{b}\tau\tau$ 1704.04298
 - expect 3 signal and 14 bkg events
 - bbbbγγ <u>1508.06524</u>
 - expect 10 signal and 31 bkg events
 - could reach 2σ significance and set exclusion limits in the κ_3 - κ_4 plane

$hhh \rightarrow \text{final state}$	BR (%)	σ (ab)	$N_{30 \mathrm{ab}^{-1}}$
$\overline{(bb)(bb)(bb)}$	19.21	1110.338	33310
$(b\bar{b})(b\bar{b})(WW_{1\ell})$	7.204	416.41	12492
$(bar{b})(bar{b})(auar{ au})$	6.312	364.853	10945
$(b\bar{b})(\tau\bar{\tau})(WW_{1\ell})$	1.578	91.22	2736
$(bar{b})(bar{b})(WW_{2\ell})$	0.976	56.417	1692
$(b\bar{b})(WW_{1\ell})(WW_{1\ell})$	0.901	52.055	1561
$(bar{b})(auar{ au})(auar{ au})$	0.691	39.963	1198
$(b\bar{b})(b\bar{b})(ZZ_{2\ell})$	0.331	19.131	573
$(b\overline{b})(WW_{2\ell})(WW_{1\ell})$	0.244	14.105	423
$(b\bar{b})(b\bar{b})(\gamma\gamma)$	0.228	13.162	394
$(b\bar{b})(\tau\bar{\tau})(WW_{2\ell})$	0.214	12.359	370
$(\tau \overline{\tau})(WW_{1\ell})(WW_{1\ell})$	0.099	5.702	171
$(\tau \bar{\tau})(\tau \bar{\tau})(WW_{1\ell})$	0.086	4.996	149
$(b\bar{b})(ZZ_{2\ell})(WW_{1\ell})$	0.083	4.783	143
$(b\bar{b})(\tau\bar{\tau})(ZZ_{2\ell})$	0.073	4.191	125

Yukawa coupling to 1st and 2nd generation fermions

- ♦ Mostly unreachable at HL-LHC
- Different methods:
- Indirect: fits of diff. cross-sections, total Higgs width, global fit of production cross-sections
- Direct inclusive decays $(H \rightarrow \mu\mu, H \rightarrow c\bar{c})$
- Direct exclusive decays (H \rightarrow meson + γ)

Light quark	Higgs decay	BR	Meson decay	N HL-LHC	N FCC-hh
u, d	H → ρ(770)γ	2E-05	π+π-	278	469438
S	$H \rightarrow \Phi \gamma$	2E-06	K+K-	38	64548
С	$H \rightarrow J/\mu\gamma$	3E-06	μμ	49	83549
С	$H \rightarrow \psi(2S)\gamma$	1E-06	μμ	17	28781
С	H → Y(nS)γ	1E-09	μμ	0	28

- first studies at LHC (ATLAS, CMS, LHCb)
- could benefit from high-statistics of FCC-hh

Direct inclusive rare decays

Complementary measurements of $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4\ell$, $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma \rightarrow \ell\ell\gamma$

CERN-ACC-2018-0045

Individual precision on BR: 1-2%

- specific ratios of BR allow for cancellation of some uncertainties

Light quarks through indirect measurements

 Constraints on light Yukawa obtained from the upper limits on BR to all untagged particles, using global fits in κ framework

♦ FCC-ee+eh+hh:

- first generation: 95% CL limits $\kappa_u < 280$, $\kappa_d < 130$
- second generation: 95% CL limit $\kappa_s < 6.4$, κ_c measured with precision of <1%

- Connection between the Higgs boson and Dark Matter searches
- Measurement from H + large E_{T}^{miss}
 - BR(H \rightarrow inv) from precise fit the E_T^{miss} spectrum
 - background p_T spectrum from Z $\rightarrow vv$ constrained to the % level from datadriven measurements
 - ultimate precision: $BR(H \rightarrow inv) < 2.5 \ 10^{-4}$
 - SM (BR(H \rightarrow 4v) = 0.11%) reached with ~1 ab⁻¹

- Ten billion Higgs bosons will be produced at FCC-hh
 - opening measurements to rare phase-spaces and decays
- The Higgs trilinear self-coupling will be measured with a precision of a few %
 - sensitive to quantum corrections of the Higgs potential and 1st order phase transitions
- First limits on the Higgs quartic self-coupling could be set

- Precise measurements of couplings to 2nd generation of fermions (μ, c) will be achievable
- Measurement of the Higgs invisible decays below the SM expectation
 portal to Dark Matter

Back-up

• Single-Higgs:

Triple-Higgs (gluon fusion):

• Di-Higgs:

Di-Higgs production at hadronic colliders

• Sensitivity to κ_{λ} directly related to the acceptance, so to the m_{HH} shape

Di-Higgs production: ee colliders

Self-coupling via single-Higgs couplings

- Higgs self-interaction via one-loop corrections of the single-Higgs production
 - κ_{λ} -dependent corrections to the tree-level cross-sections
- pp colliders:

• ee colliders:

- important when \sqrt{s} below HH threshold
- ex. for $\kappa_{\lambda} = 2$:
 - $\sigma(pp \rightarrow t\bar{t}H)$ modified by 3%
 - $\sigma(ee \rightarrow ZH)$ modified by 1%

- Object efficiency:
 - $\varepsilon_{\gamma} = 85\% (p_T = 50 \text{ GeV}, \eta = 0), f_{i \to \gamma} = 0.002.e^{-pT/30\text{GeV}}$
 - $\varepsilon b = 85\%$, $f_{1\to b} = 1\%$, $f_{c\to b} = 5\%$ ($p_T = 50$ GeV, $\eta = 0$)
- Benefit from good myy resolution:

• BDT selection against QCD background and single-Higgs:

BDT_H

-21 In L

Dependence on syst. uncertainties in previous

- Two channels: $b\overline{b}\tau_{h}\tau_{h}$ and $b\overline{b}\tau_{h}\tau_{l}$
 - assume $\epsilon_{_{\tau_h}} = 80\%$ and $f_{_{l \to \tau_h}} = 1\%$
 - assume that QCD background could be constrained enough to be neglected
 - main backgrounds: Z+jets, single-Higgs, ttV, ttVV

♦ BDT selection:

- Expected 68% CL uncertainty on $\kappa\lambda$: 12-13%
 - dominated by statistical uncertainty

- Main background: QCD
 - BDT against it

FCC-hh Combined HH results

- Extrapolation from Run-2 analysis
 - fit of m_{4i} distribution
 - $p_T^{jet} > 40$ GeV, different thresholds tested

Events / Bin ₉010 ₉010 ATLAS Preliminary Projection from Run 2 data Multije tt (all-hadronic) tt (non-all-hadronic) √s = 14 TeV, 3000 fb⁻¹ SM non-resonant HH→bbbb 10^{4} 10^{3} 10² 10 10 200 600 800 1000 1200 1400 1600 400 1800 2000 m_{HH} [GeV]

• Systematics

- dominated by multijet data-driven model
- conservative assumption: Run-2 systematics used
- Significance:
 1.4/0.61σ without/with syst

HH→bbbb (CMS)

- SM sigmal + BSM benchmark points
- Resolved and boosted b-jets
 - boosted topologies more sensitive to BSM scenarios where high $m_{_{\rm HH}}$ is enhanced
- Resolved:
 - $p_T > 45$ GeV, different thresholds tested
 - BDT against multijet $bkg + t\bar{t}$ and single-Higgs
- Small uncertainty considered for multijet background

29

HH→bbtt (ATLAS)

- Extrapolation from Run-2 analysis
- Three signal regions:
 - $\tau_{lep} \tau_{had}$ (Single Lepton Trigger)
 - $\tau_{lep} \tau_{had}$ (Lepton Tau Trigger)
 - $\tau_{had} \tau_{had}$ (Single Tau Trigger and Di-Tau Trigger)
- ♦ BDT output used as final discriminant
 - binning adapted to higher statistics
- Limit on κ_{λ} : LTT category not included and dedicated BDT trained on $\kappa_{\lambda} = 20$
- Different assumptions for systematics
 - from current to baseline for HL-LHC

Significance:
 2.5/2.1σ without/with syst

BDT score

• 3 categories: $\mu \tau_h$, $e \tau_h$, $\tau_h \tau_h$

• Use of a Deep Neural Network

- 27 basic + 21 reconstructed + 4 global features

- deep learning techniques, with optimal data preprocessing, study of the activation functions, and data augmentation

- Simultaneous fit of the NN output for the 3 decay channels
 - discriminant binned per decay channel via adaptive binning
- Significance: $1.6/1.4\sigma$ without/with syst

- Dedicated analysis with smearing functions: upgraded detector geometry and performance functions
 Performance functions
 - $m_{\gamma\gamma}$ resolution ~ 1.6 GeV
- Dedicated BDT trained to remove continuum background and main single-Higgs background (ttH)
- Limit on κ_{λ} : use of the $m_{b\bar{b}\gamma\gamma}$ distribution for events with $123 < m_{\gamma\gamma} < 127$ GeV
- Systematics: very small impact in general
- Significance:
 2.1/2.0σ without/with syst

200

300

400

500

600

700

900

800

m_{HH} [GeV]

HH→bbγγ (CMS)

- Dedicated **BDT** to reject $t\bar{t}H$
 - 75% reduction for 90% signal efficiency
- Classification of events based on $M_x = m_{jj\gamma} m_{\gamma\gamma} m_{jj} + 250$ GeV into low and high mass categories
- MVA event categorisation BDT to separate background and HH signal into medium (MP) and high (HP) purity
 CMS Phase-2
 3000 fb⁻¹ (14 TeV)

HL-LHC Combined results (1)

Expected significance (SM) with and without systematics at HL-LHC

	Statistic	al-only	Statistical + Systematic		
	ATLAS	CMS	ATLAS	CMS	
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95	
$HH \rightarrow b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4	
$HH ightarrow b ar{b} \gamma \gamma$	2.1	1.8	2.0	1.8	
$HH \rightarrow b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Comb	ined	Combined		
	4.5	5	4.0		

- 4σ expected with ATLAS+CMS!

- $\delta\mu/\mu \sim 25\%$ (30%) without (with) systematics
- $\mu = 0$ (no SM HH signal) excluded at 95% CL
- Measurement of κ_{λ} :
 - 68% CI: [0.5; 1.5]
 - 2nd minimum excluded at 99.4% CL thanks to the m_{HH} shape information

HL-LHC Combined results (2)

Difference on 2nd minimum mainly from the bbγγ channel: 3 categories of m_{HH} (especially a low-m_{HH} one) to remove the degeneracy around κ_λ=6 (while this low-m_{HH} category has no effect around 1)

• CMS slightly better below 1: $b\overline{b}b\overline{b}$ + other smaller channels

HL-LHC Combined results (3)

- 68% CI, channel by channel
- Dashed line = no ATLAS analysis, using value from CMS (as for Higgs couplings)

36

HE-LHC, HH measurements

- Extrapolation of ATLAS HL-LHC results to HE-LHC
 - scale cross-section to 27 TeV (*4) and luminosity to 15 ab⁻¹ (*5), no systematic uncertainties
 - $b\overline{b}\tau\tau$ channel: significance: 10.7σ, precision on κ_{λ} : 20%
 - **b** \overline{b} γγ channel: significance: 7.1σ, precision on κ_{λ} : 40%
 - pessimistic because analysis not optimised for measurement of κ_{λ}
- Phenomenology study for $b\overline{b}\gamma\gamma$: 15% precision on κ_{λ}
 - realistic detector performance
 - no pile-up considered (μ=800-1000)

Combination of channels: κ_λ could be measured with a 68% CI of 10 to 20 %

37

CPPM Quartic couplings

FIG. 2: Total cross section ratio normalised to the Standard Model values for gluon-fusion-initiated triple Higgs production at 100 TeV obtained by varying the c_3 and d_4 parameters independently (see Eq. 1). The Higgs boson mass was fixed to $m_h = 125$ GeV. The SM cross section at leading order is ~ 2.88 fb. The NNPDF23_nlo_as_0119 parton density function set was used.

 $V_{\text{self}} = \mu^2 |H|^2 + \lambda |H|^4 + \mathcal{O}_6, \ \mathcal{O}_6 \equiv \frac{c_6}{\Lambda^2} \lambda |H|^6,$ $c_3 = c_6, \ d_4 = 6c_6$

 $\frac{\sigma(c_3, d_4)_{hhh}}{\sigma(SM)_{hhh}} - 1 = 0.0309 \times c_3^4 - 0.2079 \times c_3^3$ $+0.0407 \times c_3^2 d_4 + 0.7384 \times c_3^2$ $+0.0156 \times d_4^2 - 0.1450 \times c_3 d_4$ $-0.1078 \times d_4 - 0.6887 \times c_3$

• κ framework:

$$(\sigma \cdot \mathrm{BR})(i \to \mathrm{H} \to f) = \frac{\sigma_i^{SM} \kappa_i^2 \cdot \Gamma_f^{SM} \kappa_f^2}{\Gamma_H^{SM} \kappa_H^2} \to \mu_i^f \equiv \frac{\sigma \cdot \mathrm{BR}}{\sigma_{\mathrm{SM}} \cdot \mathrm{BR}_{\mathrm{SM}}} = \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$
$$\kappa_H^2 \equiv \sum_j \frac{\kappa_j^2 \Gamma_j^{\mathrm{SM}}}{\Gamma_H^{\mathrm{SM}}}$$

 Extension to allow for the possibility of Higgs boson decays to invisible or untagged BSM particles:

$$\Gamma_H = \frac{\Gamma_H^{\rm SM} \cdot \kappa_H^2}{1 - (BR_{\rm inv} + BR_{\rm unt})}$$

• Different fitting scenarios:

Scenario	$BR_{ m inv}$	$BR_{ m unt}$	include HL-LHC
kappa-0	fixed at 0	fixed at 0	no
kappa-1	measured	fixed at 0	no
kappa-2	measured	measured	no
kappa-3	measured	measured	yes

Higgs couplings at Future Colliders

All results combined with HL-LHC

- Sensitivities of ee colliders in their initial stages are rather comparable
- The most precise coupling measurements (to Z and W bosons), are measured to 0.2-0.3%

CPPM Improvements wrt HL-LHC

κ framework

EFT framework

Remark: no use of differential distributions \Rightarrow underestimate of power

10

- 8

- 6

- 4

- 2

· 0

Higgs couplings: additional scenarios (1)

 Comparison of the different FCC scenarios in the kappa-0-HL scenario (similar to kappa-0 in that it does not allow any BSM decay, but including HL-LHC data)

Higgs couplings: additional scenarios (2)

Combination of the different future ee colliders with FCC-hh and HL-LHC, in an extension of the kappa-0-HL scenario. Note that ILC 250 and CLIC 380 (first stages) are shown in comparison with CEPC (240) and FCC-ee 365

Higgs couplings: additional scenarios (3)

Expected relative precision (%) of the κ parameters in the kappa-0-HL scenario for future lepton colliders combined with the HL-LHC and the FCC-hh 37.5, and with HL-LHC and FCC-hh. No BSM width is allowed in the fit: both BR_{unt} and BR_{inv} are set to 0.

				HL-LHC+FCC-hh+					
kappa-0-HL	HL-LHC+FCC-hh _{37.5} +		kappa-0-HL	ILC_{250}	CLIC ₃₈₀	CEPC	FCC-ee ₃₆₅		
	ILC_{250}	CLIC_{380}	CEPC	$FCC-ee_{365}$	Km [%]	0.37	0.36	0.35	0.27
$\kappa_W[\%]$	0.94	0.62	0.81	0.38		0.57	0.30	0.55	0.21
κz[%]	0.21	0.33	0.13	0.14	κ_Z [%]	0.19	0.26	0.12	0.13
[07]	1.2	1.2	0.07	0.97	$\kappa_g[\%]$	0.65	0.69	0.55	0.55
κ_{g} [70]	1.5	1.5	0.97	0.87	$\kappa_{\gamma}[\%]$	0.31	0.34	0.29	0.29
$\kappa_{\gamma}[\%]$	0.64	0.68	0.62	0.62	5.Z. [%]	0.71	0.74	0.69	0.7
$\kappa_{Z\gamma}[\%]$	3.	3.1	2.8	3.	$[0Z]{\gamma[70]}$	1.0	20	1.00	1.9
κ_c [%]	1.9	3.9	1.9	1.3	$h_c[70]$	1.0	3.8	1.0	1.2
κ.[%]	19	19	19	19	κ_t [%]	0.96	0.96	0.95	0.95
	0.00	0.04	0.01	0.50	$\kappa_b[\%]$	0.63	0.68	0.52	0.5
κ_b [%]	0.99	0.94	0.81	0.58	$\kappa_{\mu}[\%]$	0.43	0.47	0.41	0.41
$\kappa_{\mu}[\%]$	1.	1.1	1.	1.	κ_[%]	0.61	0.78	0.52	0.49
$\kappa_{\tau}[\%]$	0.96	1.2	0.83	0.6	$\pi_{\tau}[70]$	0.01	0.10	0.02	0.45
					$\Gamma_H[\%]$	0.90	0.98	0.74	0.67