Top-quark precision at lepton colliders

Gauthier Durieux (Technion)

FCC France workshop 15 May 2020

Tops at lepton colliders

Gauthier Durieux - FCC France workshop - 15 May 2020

Tops at lepton colliders

Gauthier Durieux - FCC France workshop - 15 May 2020

Continuum $t\bar{t}$ production

NNLO QCD, differential, stable tops

NLO EW, stable tops

[Gao, Zhu '14]

[Chen, Dekkers, Heisler, Bernreuther, Si '16]

- σ peaked at about 380 GeV
- fall-off as 1/s
- large corrections near threshold
- (enhanced for a left-handed beam)

[Beenakker, van der Marck, Hollik '91] [Fleischer, Leike, Riemann, Werthenbach '93]

[Hahn, Hollik, Lorca, Riemann, Werthenbach '93]

[Liebler, Moortgat-Pick, Papanastasiou '15]

[Chokoufé, Kilian, Lindert, Pozzorini, Reuter, Weiss '16]

 $\begin{array}{c} \sum_{i=1,25}^{2,0} \mu_{R} \in [m_{t}/2, 2m_{t}] \\ = 1,3 \\ = 1,3 \\ = 1,3 \\ = 1,0 \\ = 500 \\ = 1000 \\$

- NLO QCD, unstable tops
 - $\cdot\,$ single-top increases linearly with \sqrt{s}
 - $\cdot\ \sim$ 5% off-shell effects at $\sqrt{s}=$ 365 GeV

Continuum $t\bar{t}$ production

NNLO QCD, differential, stable tops

NLO EW, stable tops

[Gao, Zhu '14]

[Chen, Dekkers, Heisler, Bernreuther, Si '16]

- σ peaked at about 380 GeV
- fall-off as 1/s
- large corrections near threshold
- (enhanced for a left-handed beam)

[Beenakker, van der Marck, Hollik '91] [Fleischer, Leike, Riemann, Werthenbach '93] [Hahn, Hollik, Lorca, Riemann, Werthenbach '93]

- NLO QCD, unstable tops
 - $\cdot\,$ single-top increases linearly with \sqrt{s}
 - $\cdot\ \sim$ 5% off-shell effects at $\sqrt{s}=$ 365 GeV

[Liebler, Moortgat-Pick, Papanastasiou '15] [Chokoufé, Kilian, Lindert, Pozzorini, Reuter, Weiss '16]

Tools getting *ee*-ready

Whizard

- UFO support for BSM (almost complete)
- ▶ automated NLO QCD (FKS, resonance aware) [v3.0.0α from March 3, 2020]

- Powheg matching to Pythia8 shower
- ee-ISR & beamstrahlung, also for polarized beams
- matched NLO $e^+e^- \rightarrow bW^+\bar{b}W^$ to threshold NLL [1712.02220]

Gauthier Durieux - FCC France workshop - 15 May 2020

Sherpa

- UFO support for BSM
- automated NLO QCD and EW (CS substraction)
- mc@nlo matching to parton shower
- YFS resummation of soft&collinear photons
 - \cdot to be matched to matrix element for NLO EW
 - $\cdot\,$ no ISR/FSR interference yet
- Beamstrahlung being implemented
- Underlying events (e.g. $\gamma\gamma$) planned

MadGraph

- ▶ full UFO support for BSM (also at NLO)
- automated NLO QCD and EW (FKS, resonance aware)
- mc@nlo matching to parton shower
- ► ee-ISR
 - \cdot implemented for unpolarized beams [not released]
 - $\cdot\,$ validated against Whizard in $e^+e^- \rightarrow t\, \bar{t}$
- beamsstrahlung
 - · implemented using parametrizations fitted to GuineaPig

[Frixione @ FCC workshop]

- $\cdot\,$ no beam energy spread, so far
- validation ongoing
- NLO+NLL electron PDF
 - \cdot computed for unpolarized beams
 - \cdot only missing piece to be implemented for NLO EW

Top EFT at NLO QCD

LHC TOP WG standards

[dim6top UFO] [1802.07237]

avoid confusions, facilitate comparisons and combinations

- ► flavour violating [Zhang '14] [Degrande, Maltoni, Wang, Zhang '14] [GD, Maltoni, Zhang '14]
 - · UFO updated to LHC TOP WG standards [to appear]
 - \cdot automated NLO for four-fermion $\mathit{tq\ell\ell}$ operators [to appear]

 $\sigma(e^+e^- \rightarrow tj + \bar{t}j)$ [fb] 400 $t \rightarrow j \ell^+ \ell$ [GD. Maltoni, Zhang '14] t_{a}^{tgee} (a+3) or $c_{eu}^{(a+3)}$ 200100 LEP2 limits 50 $e^+e^- \rightarrow tj, \bar{t}j$ [GD, Zhang '18] (flavour@HL §8.1) 205190 195 200-4 $c_{\alpha \alpha}^{-(a+3)}$ or $c_{\alpha u}^{(a+3)}$ \sqrt{s} [GeV]

- flavour conserving
 - \cdot four-quark operators (with evanescent operators) [to appear]
 - · all-sector implementation [to appear]

[SMEFTatNLO UFO]

[Degrande, GD, Maltoni, Mimasu, Vryonidou, Zhang]

[TopFCNC UFO]

Top EFT at NLO QCD

LHC TOP WG standards

[dim6top UFO] [1802.07237]

avoid confusions, facilitate comparisons and combinations

- ► flavour violating [Zhang '14] [Degrande, Maltoni, Wang, Zhang '14] [GD, Maltoni, Zhang '14]
 - · UFO updated to LHC TOP WG standards [to appear]
 - \cdot automated NLO for four-fermion $\mathit{tq\ell\ell}$ operators [to appear]

 $\sigma(e^+e^- \rightarrow tj + \bar{t}j)$ [fb] HL-LHC (3/ab at 14 TeV) 400 [GD. Maltoni, Zhang '14] $t \rightarrow j \ell^+ \ell^$ t_{qee}^{tqee} ⁺³⁾ or $c_{eu}^{(a+3)}$ 200100 LEP2 limits $e^- \rightarrow tj, \bar{t}j$ 50 [GD, Zhang '18] (flavour@HL §8.1) 205190 195 200-4 $c_{\alpha \alpha}^{-(a+3)}$ or $c_{\alpha u}^{(a+3)}$ \sqrt{s} [GeV]

[TopFCNC UFO]

- flavour conserving
 - \cdot four-quark operators (with evanescent operators) [to appear]
 - · all-sector implementation [to appear]

[SMEFTatNLO UFO]

[Degrande, GD, Maltoni, Mimasu, Vryonidou, Zhang]

Electroweak couplings

precise, global and robust

LHC prospects

[projections from 1907.10619] [TOP WG EFT conventions]

LHC prospects

[projections from 1907.10619] [TOP WG EFT conventions]

Global $e^+e^- ightarrow t \, \overline{t}$ EFT analysis

[GD, Perelló, Vos, Zhang '18] [see also Janot '15]

Two centre of mass energies are required to constrain all ten d.o.f. accessible linearly in resonant $e^+e^- \rightarrow t \, \bar{t} \rightarrow bW^+ \, \bar{b}W^-$.

effective stat. efficiencies determined with full sim. in semi-leptonic final state

Global $e^+e^- ightarrow t \, \overline{t}$ EFT analysis

[GD, Perelló, Vos, Zhang '18] [see also Janot '15]

Two centre of mass energies are required to constrain all ten d.o.f. accessible linearly in resonant $e^+e^- \rightarrow t \, \bar{t} \rightarrow bW^+ \, \bar{b}W^-$.

statistically optimal observables

resonant $e^+e^- \rightarrow t \, \overline{t} \rightarrow bW^+ \, \overline{b}W^$ $m_b/m_t \rightarrow 0$, analytical LO observable def.

effective stat. efficiencies determined with full sim. in semi-leptonic final state

- \cdot in TeV $^{-2}$, $\Delta\chi^2=1$
- · white marks: individual constraints
- \cdot /xx: global/individual ratios

Global $e^+e^- ightarrow t \, \overline{t}$ EFT analysis

[GD, Perelló, Vos, Zhang '18]

[see also Janot '15]

Two centre of mass energies are required to constrain all ten d.o.f. accessible linearly in resonant $e^+e^- \rightarrow t \, \bar{t} \rightarrow bW^+ \, \bar{b}W^-$.

statistically optimal observables

resonant $e^+e^- \rightarrow t \, \overline{t} \rightarrow bW^+ \, \overline{b}W^$ $m_b/m_t \rightarrow 0$, analytical LO observable def.

effective stat. efficiencies determined with full sim. in semi-leptonic final state

- \cdot in TeV⁻², $\Delta \chi^2 = 1$
- \cdot white marks: individual constraints
- \cdot /xx: global/individual ratios

Polarization and energy lever arm

 $GDP \equiv \left[\det \operatorname{cov}(C_i, C_j)\right]^{1/n}$ 'global determinant parameter' geometrical average of constraints ratios are operator-basis independent

[GD, Grojean, Gu, Wang '17]

10% polarization costs $\sim 5\%$ of GDP

w.r.t.
$$P(e^+, e^-) = (\pm 30\%, \mp 80\%)$$
:
 $\cdot P(e^+)$ compensated by 140% lumi
 $\cdot P(e^+, e^-)$ " by 460% lumi

NLO QCD for $tt\ell\ell$ and CPV dipole operators

In passing:

[GD, Perelló, Vos, Zhang '18]

Top/Higgs interplay at one-loop

Top electroweak loops

• At the Z pole

[Zhang, Greiner, Willenbrock '12]

- Higgsstrahlung and W-fusion through reweighing in MG5/AMC@NLO
- Higgs decays

(excluding four-fermion operators, no top loop included in $e^+e^- \to t \bar{t})$

Top electroweak loops

(excluding four-fermion operators, no top loop included in $e^+e^- o tar t$) Gauthier Durieux – FCC France workshop – 15 May 2020

Contamination in Higgs operators

light shades: 12 Higgs op. floated + 6 top op. floated dark shades: 12 Higgs op. floated + 6 top op. \rightarrow 0

Uncertainties on the top have a big effect on the Higgs

- · Higgsstr. run: insufficient
- · Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t}$: large y_t contaminations in various coefficients
- · Higgsstr. run \oplus top@HL-LHC: large top contaminations in $\bar{c}_{\gamma\gamma,gg,Z\gamma,ZZ}$
- · Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t} \oplus$ top@HL-LHC: top contam. in \bar{c}_{gg} only

Gauthier Durieux - FCC France workshop - 15 May 2020

Top-quark precision at lepton colliders

The top quark so far escaped the scrutiny of lepton colliders.

Such machines offer a unique opportunity for precise and robust determination of the top electroweak couplings and mass.

Knowing top-quark couplings precisely is indispensable for the Higgs precision program.

Tools are getting *ee*-ready!

Backup

Statistically optimal observables

minimize the one-sigma ellipsoid in EFT parameter space

(joint efficient set of estimators, saturating the Cramér-Rao bound: $V^{-1} = I$, like MEM)

For small C_i , with a phase-space distribution $\sigma(\Phi) = \sigma_0(\Phi) + \sum_i C_i \sigma_i(\Phi)$, the stat. opt. obs. are the average values of $O_i(\Phi) = n \sigma_i(\Phi) / \sigma_0(\Phi)$.

e.g. $\sigma(\phi) = 1 + \cos(\phi) + C_1 \sin(\phi) + C_2 \sin(2\phi)$

1. asymmetries: $O_i \sim \operatorname{sign}\{\sin(i\phi)\}$

2. moments:
$$O_i \sim \sin(i\phi)$$

3. statistically optimal: $O_i \sim \frac{\sin(i\phi)}{1 + \cos\phi}$

 \implies area ratios 1.9 : 1.7 : 1