

Top physics at the FCC-ee

Benjamin Fuks

(LPTHE / Sorbonne Université)

Ist FCC France workshop

Virtually @ LPNHE, 15 May 2020

Top physics at the FCC-ee

Outline

★ 5 ab⁻¹ @ 240 GeV (single top)

Top pair production close to threshold (I)

Top physics at the FCC-ee

Top pair production close to threshold (2)

Need for precision predictions

$$\sigma_{t\bar{t}} = \sigma_0 \sum_{n} \left[\frac{\alpha_s}{v}\right]^n \sum_{j} \left[\alpha_s \log v\right]^j \left(LL + NLL(\alpha_s, v) + N^2 LL(\alpha_s^2, \alpha_s v, v^2) + \dots\right)$$

Theory calculations

Higgs-boson exchange
Bound state effects large
N³LO corrections in NRQCD [Beneke et al. (PRL`15)]
N²LL (velocity logs)
Threshold: α_s ≈ v ≈ 0.1 [Hoang & Stahlhofen (JHEP`14)]
Matching with the WbWb continuum [Bach et al. (JHEP`18)]
More realistic predictions
ISR profile to include
Broadening of the peak
Taming of the tail

Top pair production close to threshold (3)

Anomalous top gauge couplings (I)

Generic parameterisation of the top electroweak couplings

$$\begin{aligned} \mathcal{L} &= ie \ \bar{t}\gamma^{\mu} \Big[F_{1L}^{V} P_{L} + F_{1R}^{V} P_{R} \Big] tV_{\mu} - \frac{1}{2\Lambda} \bar{t}\sigma^{\mu\nu} \Big[F_{2L}^{V} P_{L} + F_{2R}^{V} P_{R} \Big] tV_{\mu\nu} \\ &+ i \frac{g}{\sqrt{2}} \ \bar{b}\gamma^{\mu} \Big[F_{1L}^{W} P_{L} + F_{1R}^{W} P_{R} \Big] tW_{\mu} - \frac{1}{2\Lambda} \bar{b}\sigma^{\mu\nu} \Big[F_{2L}^{W} P_{L} + F_{2R}^{W} P_{R} \Big] tW_{\mu\nu} + \text{h.c.} \end{aligned}$$

Top quark polarisation (as transferred into the decay products)

- → Distribution measurements (FB asymmetries, etc.)
- Correlations in 2D distributions

Example: neutral currents

Lepton angular and energy spectra in semi-leptonic top-antitop systems

Anomalous top gauge couplings (2)

Top couplings as handles on new physics

The EFT paradigm

Improvement on the anomalous coupling descriptions: EFT operators \bullet Gauge invariant (W, Z and γ are not independent) Can be matched to any heavy new physics model Gauge interaction modifiers Four-fermion operator relevant (after decays) $O_{lq}^1 \equiv \frac{1}{2} \ \bar{q} \gamma_\mu q \ \bar{l} \gamma^\mu l$ $O_{lq}^{\hat{J}} \equiv \frac{1}{2} \, \bar{q} \tau^I \gamma_\mu q \, \bar{l} \tau^I \gamma^\mu l$ $O^S_{lequ}\equiv ar{q} u \; \epsilon \, ar{l} e$ $O_{lequ}^T\equivar{q}\sigma^{\mu u}$ u $\epsilon\,ar{l}\sigma_{\mu u}$ e $O_{lu} \equiv \frac{1}{2} \ \bar{u}\gamma_{\mu}u \quad \bar{l}\gamma^{\mu}l$ $O_{ledg} \equiv \bar{d}q \ \bar{l}e$ $O_{eq} \equiv \frac{1}{2} \ \bar{q} \gamma_{\mu} q \quad \bar{e} \gamma^{\mu} e$ $O_{eu} \equiv \frac{1}{2} \ \bar{u}\gamma_{\mu}u \ \bar{e}\gamma^{\mu}e$ I0 relevant combinations for top physics at 365 GeV 8 CP-even + 2 CP-odd

The SMEFT @ lepton colliders

A global approach to constrain top-induced new physics

- Top pair production modifications
- Single top processes
- New top decay modes

Allows for a global approach

- Percent-level measurements to combine as percent-level constraints
- Suppressions (and thus reduced sensitivities) possible \rightarrow dim 8 terms

Example of observables

 \bigstar Ratio of the EFT to the SM predictions

Top physics at the FCC-ee

A global approach for the top properties

Statistically optimal observables only

Correlations

- Many operators lead to identical Lorentz structures
- * White vertical lines: one operator at a time paradigm

Top FCNCs

Anomalous couplings

$$\mathcal{L} = \sum_{q=u,c} \left[\sqrt{2}g_s \frac{\kappa_{gqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} T_a (f_q^L P_L + f_q^R P_R) q \ G_{\mu\nu}^a \qquad t \rightarrow \mathcal{N}_Z \\ + \frac{g}{\sqrt{2}c_W} \frac{\kappa_{zqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (\hat{f}_q^L P_L + \hat{f}_q^R P_R) q \ Z_{\mu\nu} \\ + \frac{g}{4c_W} \frac{\zeta_{zqt}}{\Lambda} \bar{t} \gamma^{\mu} (\tilde{f}_q^L P_L + \tilde{f}_q^R P_R) q \ Z_{\mu} \right] + \text{h.c.} \qquad e \qquad \star d \qquad$$

Two handles Rare top decays Single top production \$ 5 ab⁻¹ @ 240 GeV

★ I.5 ab⁻¹ @ 365 GeV

Translations in terms of BR: improvement over the LHC

Top physics at the FCC-ee

FCNC in the effective field theory

Four-fermionic interactions to be included * 56 degrees of freedom!

A rich top physics program at the FCC

Plans

- ★ 1.5 ab⁻¹ @ 365 GeV \rightarrow 1 million $t\bar{t}$ pairs
- ★ 200 fb-1 @ 340 350 GeV (tt threshold scan)

Precision measurements at threshold

- \star Top mass, width and Yukawa
- ★ Top couplings
- \star Rare decays

