Overview of τ physics at FCC-ee

FCC France Workshop 14-15 May 2020

Mogens Dam Niels Bohr Institute University of Copenhagen

Luminosity & Statistics

Mogens Dam / NBI Copenhagen

Outline

- a. τ Polarisation Measurement
- b. τ-lepton Properties and Lepton Universality
- c. Lepton Flavour Violating τ decays
- d. Lepton Flavour Violating Z decays

References:

- FCC CDR Volume 1
- Mogens Dam

Tau-lepton Physics at the FCC-ee circular e⁺e⁻ Collider SciPost Phys.Proc. 1 (2019) 041, DOI: <u>10.21468/SciPostPhysProc.1.041</u>

τ Polarisation Measurement

Example: LEP experiment aleph

Experimental aspects

Use τ decays as spin analysers (V-A)

- Two helicity states result in different kinematic distributions that are fitted to observed distribution of appropriate variables
- Divide (typically) into six decay modes

Important aspects

- Selection of τ decays
 - Backgrounds from qq, ee, μμ, γγ
- Interchannel separation
 - Mainly between $h+n\pi^{\circ}$ states => Photon and π° reconstruction
- Selection efficiency and backgrounds as function of kinematic variables
- Reconstruction of kinematic variables

Obtained results and precisions – case aleph

		Obtained results		_				Eur.Ph	iys.J.C	20:40:	L-430,	2001		
	Channel	$\mathcal{A}_{ au}$ (%)	$\mathcal{A}_{e}~(\%)$											
	hadron rho	dron $15.21 \pm 0.98 \pm 0.49$ $15.28 \pm 1.30 \pm 0.12$ the $13.79 \pm 0.84 \pm 0.38$ $14.66 \pm 1.12 \pm 0.09$			Most precise channels									
	a1(3h)	$14.77 \pm 1.60 \pm 1.00$	$13.58 \pm 2.11 \pm 0.40$	ľ										
a1(h2 π°) 16.34 ± 2.06 ± 1.52 15.62 ± 2.72 ± 0.47 electron 13.64 ± 2.33 ± 0.96 14.09 ± 3.17 ± 0.91							systematics							
	muon	$13.64 \pm 2.09 \pm 0.93$	$11.77 \pm 2.77 \pm 0.25$		Source	h	ρ	$A_{ au}$ 3 h	$h 2\pi^0$	e	μ	Incl. h		
pi	on inclusive	$14.93 \pm 0.83 \pm 0.87$	$\frac{14.91 \pm 1.11 \pm 0.17}{14.58 \pm 0.72 \pm 0.10}$		selection	-	0.01	-	-	0.14	0.02	0.08		
	Combined	$14.44 \pm 0.55 \pm 0.27$	$14.58 \pm 0.73 \pm 0.10$		ECAL scale	0.15	0.11	0.22	1.10	0.47	-	-		
•	LEP me	asurement stati	stics limited		misid.	0.13 0.05 0.22	- 0.24	- 0.37	- 0.22	0.07	0.07	0.18		
 At FCC-ee, ~ 10⁵⁻⁶ larger statistics: Need much reduced systematics 				non- τ back. τ BR	$0.19 \\ 0.09$	$\begin{array}{c} 0.08 \\ 0.04 \end{array}$	$0.05 \\ 0.10$	$0.18 \\ 0.26$	$\begin{array}{c} 0.54 \\ 0.03 \end{array}$	$\begin{array}{c} 0.67 \\ 0.03 \end{array}$	$0.15 \\ 0.78$			
				modelling MC stat	- 0.30	- 0.26	$0.70 \\ 0.49$	$0.70 \\ 0.63$	- 0.61	- 0.63	0.09 0.26			
					TOTAL	0.49	0.38	1.00	1.52	0.96	0.93	0.87		
	The sinc	gle most importan	t systematics		Source	h	ρ	A_e 3 h	$h2\pi^0$	e	μ	Incl. h		
	(on the i	most precise char on and πº identific	nels) is due		tracking non- τ back.	$\begin{array}{c} 0.04\\ 0.11\end{array}$	-0.09	- 0.04 0.40	- 0.22 0.40	- 0.91	$0.05 \\ 0.24$	0.17		
					TOTAL	0.12	0.09	0.40	0.40	0.91	0.25	0.17		

γ and π^o reconstruction in τ decays – case aleph

⇒ Key: Overall detector design; good ECAL pattern recognition essential

τ-lepton properties and Lepton Universality

τ lifetime [fs]

Tau Mass (i)

- Current world average: $m_{\tau} = 1776.86 \pm 0.12 \text{ MeV}$
- Best in world: BES₃ (threshold scan) $m_{\tau} = 1776.91 \pm 0.12$ (stat.) $^{+0.10}_{-0.13}$ (syst.) MeV
- Best at LEP: OPAL
 - About factor 10 from world's best
 - Main result from endpoint of distribution
 - of pseudo-mass in $\tau \rightarrow 3\pi^{\pm}(n\pi^{o})\nu_{\tau}$
 - Dominant systematics:
 - * Momentum scale: 0.9 MeV
 - \star Energy scale: 0.25 MeV (including also π^o modes)
 - Dynamics of τ decay: 0.10 MeV
- Same method from Belle
 - Main systematics
 - Beam energy & tracking system calib.: 0.26 MeV
 - Parameterisation of the spectrum edge: 0.18 MeV

 $m_{\tau} = 1776.61 \pm 0.13$ (stat.) ± 0.35 (syst.) MeV

Pseudo-mass: $M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$

 $M_{min} (GeV/c^2)$

Tau Mass (ii)

- Prospects for FCC-ee:
 - 3 prong, 5 prongs, (perhaps even 7 prongs?)
 - Statistics 10⁵ times OPAL: δ_{stat} = 0.004 MeV

Systematics:

- At FCC-ee, *E_{BEAM}* known to better than 0.1 MeV (~ 1 ppm) from resonant depolarisation
 - Negligible effect on m_τ
- * Likely dominant experimental contribution comes from understanding of the mass scale
 - Use high stats $e^+e^- \rightarrow \mu^+\mu^-$ sample to fix momentum scale. Extrapolate down to momenta typical for $\tau \rightarrow 3\pi$.
 - Use known particles, e.g. $D^{\circ} \rightarrow K^{-}\pi^{+}/K^{-}\pi^{+}\pi^{-}\pi^{-}$ and $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$, to fix mass scale
 - m_D known to 50 keV (KEDR)
- Reduce uncertainty from parametrisation of spectrum edge by use of theoretical spectrum checked against high statistics data
- Cross checks using 5-prongs
- □ Suggested overall systematics: $\delta_{syst} \leq 0.1 \text{ MeV}$
 - Could potentially touch current precision but probably no substantial improvement ??

⇒ Key: precise control of momentum scale also in dense, multi-prong topologies

Tau Lifetime (i)

- Current world average: $\tau_{\tau} = 290.3 \pm 0.5$ fs
- Best in world (Belle): τ_τ = 290.17 ± 0.53 stat ± 0.22 syst fs
 - **Large statistics**: 711 fb⁻¹ (a) Y(4s): $6.3 \times 10^8 \tau^+ \tau^-$ events
 - Use 3 vs. 3 prong events (1.1M events); reconstruct 2 secondary vertices + primary vertex
 - \Box Measure flight distance \Rightarrow proper time
 - \square Dominant systematics: Vertex detector alignment to ~0.25 μm
 - * Vertex detector outside 15 mm beam pipe
- Best at LEP (DELPHI): τ_τ = 290.0 ± 1.4 stat ± 1.0 syst fs
 - **Δ** "Low" statistics: ~250,000 τ⁺τ⁻ events
 - Three methods:
 - Decay length (1v3 + 3v3), impact parameter difference (1v1), miss distance (1v1)
 - Lowest systematics from decay length method (1v3)
 - $\star\,$ Dominant systematics: Vertex detector alignment to 7.5 μm
 - Alignment with data (qq events): statistics limited
 - \star Vertex detector: 7.5 μm point resolution at 63, 90, and 109 mm

12

Tau Lifetime (ii)

Prospects at FCC-ee

Small beam-pipe radius (15 mm): Vertex detector with 3 μm space points at 18, 38, 58 mm

[DELPHI: 7.5 µm @63, 90, 109 mm]

 $\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2/(p^2 \sin^3(\theta))}.$

Impact parametre resolution ~5 times better than at LEP for relevant momenta

- * DELPHI: a = 20 μ m, b = 65 μ m
- * Belle: a = 19 μm, b = 50 μm
- * FCC-ee: a = $3 \mu m$, b = 15 μm
- Assume same alignment uncertainty as Belle:
 - \star 0.25 μm , i.e. factor 30 improvement wrt DELPHI.
 - * Possible systematics on flight distance method: 1.3/30 fs

$$\delta_{syst} = 0.04 \text{ fs}$$
 ; $\delta_{stat} = 0.001 \text{ fs}$

- Further prospects: lifetime can be measured with different systematics in many modes
 1v1: impact parameter difference, miss distance
 1v3: flight distance
 - □ 3v3 (4 × 10⁹ events): flight distance sum

⇒ Key: Careful design and precise control of vertex detector

Tau Leptonic Branching Fractions

World average

□ B(τ→evν) = 17.82 ± 0.05 %

; $B(\tau \rightarrow \mu \nu \nu) = 17.39 \pm 0.05 \%$

- ◆ Dominated by Aleph @ LEP
 - $\Box B(\tau \rightarrow e\nu\nu) = 17.837 \pm 0.072_{stat} \pm 0.036_{syst}\% ; B(\tau \rightarrow \mu\nu\nu) = 17.319 \pm 0.070_{stat} \pm 0.032_{syst}\%$
- Three uncertainty contributions dominant in the Aleph measurement
 - * Selection efficiency: 0.021 / 0.020 %
 - \star Non- $\tau^{+}\tau^{-}$ background: 0.029 / 0.020 %
 - * Particle ID: 0.019 / 0.021 %

All of these were limited by statistics: size of test samples, etc.

Prospects at FCC-ee

Enormous statistics:

$\delta_{\text{stat}} = 0.0001$ %

- Systematic uncertainty is hard to (gu)estimate at this point.
 - Depends intimately on the detailed performance of the detector(s)
 - At the end of the day, between LEP experiments, δ_{syst} varied by factor ~3
 - Lesson: Design your detector with care!

With the large statistics, we will learn a lot. Suggest a factor 10 improvement wrt Aleph:

$$\delta_{syst}$$
 = 0.003 %

⇒ Key: Many ingredients; tracking, calorimetry, overall detector design

Summary of Precisions & Lepton Universality

Observable	Measurement	Measurement Current precision F		Possible syst.	Challenge	
m _τ [MeV]	Threshold / inv. mass endpoint	1776.86 ± 0.12	0.004	0.1	Mass scale	
τ _τ [fs]	Flight distance	290.3 ± 0.5 fs	0.001	0.04	Vertex detector alignment	
Β(τ→eνν) [%]	Selection of τ⁺τ⁻, identification of final state	17.82 ± 0.05	0.0001	0.000	Efficiency, bkg, Particle ID	
Β(τ→μνν) [%]		17.39 ± 0.05	0.0001	0.003		

$\tau^{\text{-}} \rightarrow e^{\text{-}} \gamma_{\prime} \ \tau^{\text{-}} \rightarrow \mu^{\text{-}} \gamma$

Current limits:

□ $Br(\tau^- \rightarrow e^-\gamma) < 3.3 \times 10^{-8}$ BaBar, 10.6 GeV; 4.8 × 10⁸ e⁺e⁻ → $\tau^+\tau^-$: 1.6 expected bckg □ $Br(\tau^- \rightarrow \mu^-\gamma) < 4.4 \times 10^{-8}$ 3.6 expected bckg

- Main background: Radiative events (IRS+FSR), $e^+e^- \rightarrow \tau^+\tau^-\gamma$ $\Box \tau \rightarrow \mu\gamma$ faked by combination of γ from ISR/FSR and μ from $\tau \rightarrow \mu\bar{\nu}\nu$
- At FCC-ee, with 1.7 × 10¹¹ $\tau^+\tau^-$ events, what can be expected?
 - Boost 4 5 times higher than at superKEKB
 - Detector resolutions rather different, especially ECAL
 - \square Parametrised study of signal and the main background, $e^+e^- \to \tau^+\tau^-\gamma,$ performed
 - * See following 2 pages
 - From this study (assuming a 25% signal and background efficiency), projected BR sensitivity: 2 X 10⁻⁹

$\tau \to \mu \gamma$ Study – The signal

• Generate **signal events** with pythia8: $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma)$, with $\tau^- \rightarrow \mu^-\gamma$

$\tau \to \mu \gamma$ Study – The background

- Background: Generate 5 x 10⁸ events $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma) \rightarrow (\mu^+\nu\nu)(\mu^-\nu\nu)(\gamma)$ **a** 1 x 10⁹ $\tau \rightarrow \mu\nu\nu$ decays corresponding to
 - 5.7 x 10⁹ τ decays from 8.4 x 10¹⁰ Z decays
- \blacklozenge Study all μ and γ combinations

Mogens Dam / NBI Copenhagen

 $\tau^{-} \rightarrow \ell^{-} \ell^{+} \ell^{-}$

• Current limits:

□ All 6 combs. of e^{\pm} , μ^{\pm} : Br $\leq 2 \times 10^{-8}$ Belle@10.6 GeV; 7.2 × 10⁸ $e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}$: no cand. □ $\mu^{-}\mu^{+}\mu^{-}$: Br < 4.6 × 10⁻⁸ LHCb 2.0 fb⁻¹: background candidates

♦ FCC-ee prospects

Expect this search to have very low background, even with FCC-ee like statistics
 Should be able to have sensitivity down to BRs of *stores*

• Many more decay modes to search for when time comes...

$Z \rightarrow e \tau ~~and~~ Z \rightarrow \mu \tau$

Current limits:

 $\Box Br(Z \rightarrow e\tau) < 9.8 \times 10^{-6} LEP/OPAL \quad (4 \times 10^{6} Z decays)$

 $\square \ \textbf{Br}(\textbf{Z} \rightarrow \textbf{\mu} \textbf{\tau}) < \textbf{12.} \times \textbf{10}^{-6} \quad LEP/DELPHI \quad (4 \times 10^6 \text{ Z decays})$

Method:

Identify clear tau decay in one hemisphere
 Look for "beam-energy" lepton (electron or muon) in other hemisphere

Limitation: How to define "beam-energy" lepton

□ Unavoidable background from $\tau \rightarrow evv / \tau \rightarrow \mu vv$ with two (very) soft neutrinos □ How much background depends on energy/momentum resolution □ Example DELPHI

$Z \to {\boldsymbol{\ell}} \tau$ - Study of Sensitivity

- Generate very upper part of μ momentum spectrum from τ → μνν decays
 Luminosity equivalent to 5 x 10¹² Z decays
- Inject LFV signal of adjustable strength

□ Here for illustration, $Br(Z \rightarrow \tau \mu) = 10^{-7}$, i.e. 500,000 e/µ

- Smear momentum by variable amounts, here **1.8 x 10**-3
- Define x > 1 as signal region —
- Derive 95% confidence limit on excess in signal region
- Findings:
 - Sensitivity scales linear with momentum resolution
 - FCC-ee detectors have a momentum

resolutiuon at p=45.6 GeV of about 1.5 x 10⁻³

- Ten times better than for LEP detectors
- □ Add contribution from beam-energy spread (0.9 x 10⁻³). Total: 1.8 x 10⁻³
- Sensitivity for 5×10^{12} Z decays, $\delta p/p = 1.8 \times 10^{-3}$, 25% signal and bkg efficiency (clear tau)
 - □ For $Z \rightarrow \tau \mu$, sensitivity down to BRs of **10**⁻⁹
 - □ For Z→τe, similar sensitivity
 - Momentum resolution of electrons tend to be slightly worse than muons due to bremsstrahlung.
 However, downwards smearing is not a major concern.

10⁻⁹

$Z \to e \mu$

e

(E-E_b

(b)

- Current limit:
 - **7.5 x 10⁻⁷ LHC/ATLAS** (20 fb⁻¹; no candidates)

1.7 X 10⁻⁶ LEP/OPAL (4.0 X 10⁶ Z decays: no candidates) $\frac{2}{3}$ OPAL DATA 91-94

Clean experimental signature:

Beam energy electron vs. beam energy muon

- Main experimental challenge:
 - Catastrophic bremsstrahlung energy loss of muon in electromagnetic calorimeter
 - $\boldsymbol{\ast}$ Muon would deposit (nearly) full energy in ECAL: Misidentification $\mu \rightarrow e$
 - ♦ NA62: Probability of muon to deposit more than 95% of energy in ECAL: 4 x 10⁻⁶
 - Possible to reduce by
 - ECAL longitudinal segmentation: Require energy > mip in first few radiation lengths
 - Aggressive veto on HCAL energy deposit and muon chamber hits
 - ✤ If dE/dx mesaurement available, (some) independent e/µ separation at 45.6 GeV
 - Could give handle to determine misidentification probability $P(\mu \rightarrow e)$
 - Notice: ATLAS uses transition radiation as part of electron ID.
- ♦ FCC-ee:
 - □ Misidentification from catastrophic energy loss corresponds to limit of about $Br(Z \rightarrow e\mu) \simeq 10^{-8}$
 - □ Possibly do $\mathcal{O}(10)$ better than that Br(Z → eµ) ~ 10⁻⁹ (probably even 10⁻¹⁰ with IDEA dE/dx)

Z.Phys. C67

Summary

- From 5 x 10¹² Z decays, FCC-ee will produce 1.7 x 10¹¹ τ⁺τ⁻ pairs
- Factor ~3 higher statistics than Belle2 projection; plus higher boost (γ = 25)
 Boost is advantageous for most studies
- Potential for very precise $\sin^2\theta_W$ determination vis **\tau polarisation** measurement
- Improve Lepton universality test by at least a factor 10 down to $\mathcal{O}(10^{-4})$ level
 - \square Substantial improvement in τ lifetime
 - **□** Substantial improvement in **τ** branching fractions
 - Virtually no progress since LEP
 - \square Competitive measurement of τ mass
- Searches for lepton flavour violating τ decays; sensitivites comparable to Belle2
 Range from ≤ 10⁻¹⁰ to few x 10⁻⁹
- Improved sensitivity to lepton flavour violating Z decays by factor O(104)
 Sensitivities down to 10⁻⁹
- + Plus hadronic branching ratios and spectral functions, α_s , ν_{τ} mass, ...

Summary - Detector requirements

• Precision τ physics sets very strong detector requirements; constitutes a good benchmark

Vertexing

 \star Lifetime measurement to 10⁻⁴ corresponds to 0.22 μm flight distance

Tracking

- Two (or rather multi) track separation: measure 3-, 5-, 7-, and perhaps even 9-prong decays
- Extremely good control of momentum and mass scale
 - τ mass measurement
 - Sensitivity of search fpr flavour violating Z decays, e.g. Z → μτ, scales linearly in momentum resolution at 45.6 GeV
- Low material budget: Minimize confusion from hadronic interaction in material
- Calorimetry
 - $\star\,$ Clean γ and $\pi^o\,reconstruction$ from 0.2 to 45 GeV is key to precison τ physics
 - * Collimated topologies: Important to be able to separate γs from closelying hadronic showers
 - Aleph actually did pretty well with 3x3 cm ECAL cells divided into three longitudinal samplings. Should make sure that current detector concept do at least as well.
- ם PID
 - * Necessary if one desires to separate π/K modes (o 45 GeV momentum range)
 - Redundancy: Provides valuable handle to create test samples for study of calorimetry
 - For IDEA drift chamber, even for e/μ separation

Extra Slides

$\tau \to \mu \gamma$ Study – Check of method

Cross check: Perform similar study at B-factory, $\sqrt{s} = 10.6 \text{ GeV}$ \Box Again 5 x 10⁸ events $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma) \rightarrow (\mu^+\nu\nu)(\mu^-\nu\nu)(\gamma)$

Mogens Dam / NBI Copenhagen