B-physics and viable NP(LQ) scenarios

Damir Bečirević

Pôle Théorie, IJCLab
CNRS et Université Paris-Saclay

Workshop FCC-France (May 2020)

based on works done with
A. Angelescu, P. Arnan, I. Doršner, S. Fajfer, D. Faroughy, N. Košnik, F. Mescia, O. Sumensari, R. Zukanovich-Funchal

Turn of the 21st century CKM

Impressively - TL UT and LP UT agree to less than I0\%
CPV phase is non-zero but too small to accommodate the observes BAU
[Experiment - high precision era! Lattices huge improvement!]
Only tensions in Vub and Vcb (inclusive Vs. exclusive) but all in all, CKM is very unitary! 2008, Nobel Prize

Impressive progress in LQCD

Impressive progress in LQCD

Or else... NP searches

Strategy:

fix $\mathrm{V}_{\text {ij }}$ from tree level processes, then look for NP in FCNC

$$
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{\text {theo. }}=3.34\left({ }_{-25}^{+13}\right) \times 10^{-9} \quad \mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{LHCb}+\mathrm{CMS}}=2.9(7) \times 10^{-9}
$$

$C_{i j}$	1	$V_{t i} V_{t j}^{*}$
$B_{s} \rightarrow \mu^{+} \mu^{-}$	$>10 \mathrm{TeV}$	$>2.5 \mathrm{TeV}$
$K \rightarrow \pi \nu \bar{\nu}$	$>100 \mathrm{TeV}$	$>1.8 \mathrm{TeV}$

$$
O=\frac{1}{\Lambda^{2}} C_{i j} \bar{Q}_{i} \gamma^{\mu} Q_{j} H^{\dagger} D_{\mu} H
$$

Strategy:
fix V_{ij} by tree level processes, then look for NP in FCNC

$$
O=\frac{1}{\Lambda^{2}} C_{i j}^{\prime} \bar{Q}_{i} \gamma^{\mu} Q_{j} \bar{Q}_{i} \gamma_{\mu} Q_{j}
$$

$C_{i j}^{\prime}$	1	$\left\|V_{t i} V_{t j}^{*}\right\|^{2}$
$K^{0}-\bar{K}^{0}$	$>2 \times 10^{4} \mathrm{TeV}$	$>8 \mathrm{TeV}$
$B^{0}-\bar{B}^{0}$	$>0.5 \times 10^{4} \mathrm{TeV}$	$>5 \mathrm{TeV}$
$B_{s}^{0}-\bar{B}_{s}^{0}$	$>0.1 \times 10^{4} \mathrm{TeV}$	$>5 \mathrm{TeV}$

Flavor puzzle

$C_{i j}$	1	$V_{t i} V_{t j}^{*}$
$B_{s} \rightarrow \mu^{+} \mu^{-}$	$>10 \mathrm{TeV}$	$>2.5 \mathrm{TeV}$
$K \rightarrow \pi \nu \bar{\nu}$	$>100 \mathrm{TeV}$	$>1.8 \mathrm{TeV}$

- For natural C~O(1), NP scale is huge
- Need lots of fine tuning to reduce NP scale to $\mathrm{O}(1 \mathrm{TeV})$ as needed to mend the hierarchy problem
- Way out: NP is (almost) aligned with the SM
- MFV

$C_{i j}^{\prime}$	1	$\left\|V_{t i} V_{t j}^{*}\right\|^{2}$
$K^{0}-\bar{K}^{0}$	$>2 \times 10^{4} \mathrm{TeV}$	$>8 \mathrm{TeV}$
$B^{0}-\bar{B}^{0}$	$>0.5 \times 10^{4} \mathrm{TeV}$	$>5 \mathrm{TeV}$
$B_{s}^{0}-\bar{B}_{s}^{0}$	$>0.1 \times 10^{4} \mathrm{TeV}$	$>5 \mathrm{TeV}$

2012-202X : LFUV was and still is exciting

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)_{\ell \in(e, \mu)} \quad \& \quad R_{D^{(*)}}^{\exp }>R_{D^{(*)}}^{\mathrm{SM}}, ~} \quad
$$

$$
R_{K^{(*)}}=\left.\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu \mu\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e e\right)}\right|_{q^{2} \in\left[q_{\min }^{2}, q_{\max }^{2}\right]} \& \quad R_{K^{(*)}}^{\exp }<R_{K^{(*)}}^{\mathrm{SM}}
$$

Also corroborated by LHCb through $R_{J / \psi}^{\exp }>R_{J / \psi}^{\mathrm{SM}}, R_{p K}^{\exp }>R_{p K}^{\mathrm{SM}}$

$$
\begin{array}{ll}
R_{D^{(*)}}^{\exp }>R_{D^{(*)}}^{\mathrm{SM}} & \Rightarrow \quad \Lambda_{\mathrm{NP}} \lesssim 3 \mathrm{TeV} \\
R_{K^{(*)}}^{\exp }<R_{K^{(*)}}^{\mathrm{SM}} \quad \Rightarrow \quad \Lambda_{\mathrm{NP}} \lesssim 30 \mathrm{TeV} \quad \text { Di Luzio et al. } 2017
\end{array}
$$

After Moriond EW 2019

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)}
$$

- NEW [Belle]: $R_{D}=0.31(4)$, $R_{D^{*}}=0.28(2)$.
- $R_{\left.D^{*}\right)}$ discrepancy w.r.t. SM predictions decreases from 3.8σ to 3.1σ.
- Large disagreement between BaBar and Belle results.
\Rightarrow Unclear exp. situation!

After Moriond EW 2019

- NEW [LHCb]:

$$
\left[R_{K}^{\text {new }}\right]_{\text {avg }}=0.85(6)
$$

- Discrepancy between Run 1 and Run $2[\approx 2 \sigma]$:

$$
\begin{aligned}
& {\left[R_{K}^{\text {new }}\right]_{\text {run } 1}=0.71(8)} \\
& {\left[R_{K}^{\text {new }}\right]_{\text {run 2 }}=0.92(8)}
\end{aligned}
$$

EFT - exclusive $b \rightarrow c \ell \nu$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}} & =-2 \sqrt{2} G_{F} V_{c b}\left[\left(1+g_{V_{L}}\right)\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\ell}_{L} \gamma^{\mu} \nu_{L}\right)+g_{V_{R}}\left(\bar{c}_{R} \gamma_{\mu} b_{R}\right)\left(\bar{\ell}_{L} \gamma^{\mu} \nu_{L}\right)\right. \\
& \left.+g_{S_{R}}\left(\bar{c}_{L} b_{R}\right)\left(\bar{\ell}_{R} \nu_{L}\right)+g_{S_{L}}\left(\bar{c}_{R} b_{L}\right)\left(\bar{\ell}_{R} \nu_{L}\right)+g_{T}\left(\bar{c}_{R} \sigma_{\mu \nu} b_{L}\right)\left(\bar{\ell}_{R} \sigma^{\mu \nu} \nu_{L}\right)\right]+ \text { h.c. }
\end{aligned}
$$

- $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$ gauge invariance:
$\Rightarrow g_{V_{R}}$ is LFU at dimension $6\left(W \bar{c}_{R} b_{R}\right.$ vertex).
\Rightarrow Four coefficients left: $g_{V_{L}}, g_{S_{L}}, g_{S_{R}}$ and g_{T}.
- Several viable solutions to $R_{D^{(*)}}$:
[Freytsis et al. 2015]
- e.g. $g_{V_{L}} \in(0.04,0.11)$, but not only!

Which coupling? Situation after Moriond EW 2019

Updates of Freytsis et al. '15 Angelescu et al. '18

Which Lorentz structure to pick?
Observables from angular distribution of $B \rightarrow D^{*}(D \pi) \ell \nu$ can help

MILC-Fermilab 1912.05886

What $L Q$ scenario for R_{D} and $R_{D^{*}}$?

Model	$g_{\text {eff }}^{b \rightarrow c \tau \bar{\nu}}\left(\mu=m_{\Delta}\right)$	$R_{D^{(*)}}$
$S_{1}=(\overline{3}, 1,1 / 3)$	$g_{V_{L}}, g_{S_{L}}=-4 g_{T}$	\checkmark
$R_{2}=(3,2,7 / 6)$	$g_{S_{L}}=4 g_{T}$	\checkmark
$S_{3}=(\overline{3}, 3,1 / 3)$	$g_{V_{L}}$	\times
\ldots	\ldots	\ldots
$U_{1}=(3,1,2 / 3)$	$g_{V_{L}}, g_{S_{R}}$	\checkmark
$U_{3}=(3,3,2 / 3)$	$g_{V_{L}}$	\times
\ldots	\ldots	\ldots

Viable models for $\underline{R_{D^{(*)}}}$:

- $U_{1}\left(g_{V_{L}}\right), S_{1}\left(g_{V_{L}}\right.$ and $\left.g_{S_{L}}=-4 g_{T}\right)$, and $R_{2}\left(g_{S_{L}}=4 g_{T} \in \mathbb{C}\right)$
- Some models are excluded by other flavor constraints: $B \rightarrow K \nu \bar{\nu}, \Delta m_{B_{s}} \ldots$
- Possibility to distinguish them by using other $b \rightarrow c \not \nu \nu$ observables!

EFT - exclusive $b \rightarrow$ sll

$$
\mathcal{H}_{\text {eff }}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left[\sum_{i=1}^{6} C_{i}(\mu) \mathcal{O}_{i}(\mu)+\sum_{i=7,8,9,10, P, S, \ldots}\left(C_{i}(\mu) \mathcal{O}_{i}+C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}\right)\right]+\text { h.c. }
$$

$$
\begin{array}{ll}
\mathcal{O}_{9}^{(\prime)}=\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) & \mathcal{O}_{10}^{(\prime)}=\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma^{5} \ell\right) \\
\mathcal{O}_{S}^{(\prime)}=\left(\bar{s} P_{R(L)} b\right)(\overline{\ell \ell}) & \mathcal{O}_{P}^{(\prime)}=\left(\bar{s} P_{R(L)} b\right)\left(\bar{\ell} \gamma_{5} \ell\right) \\
\mathcal{O}_{7}^{(\prime)}=m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R(L)} b\right) F^{\mu \nu} & \\
\hline
\end{array}
$$

$$
\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right)^{\exp }=\left(3.0 \pm 0.6_{-0.2}^{+0.3}\right) \times 10^{-9}
$$

Fit to clean quantities: $\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right)$ and $R_{K^{(*)}}$

- Only vector (axial) coefficients can accommodate data.
- $C_{9,10}^{\prime}$ disfavored by $R_{K^{*}}^{\exp }<R_{K^{*}}^{\mathrm{SM}}$
- $C_{9}=-C_{10}$ allowed - consistent with a left-handed $S U(2)_{L}$ invariant operator!

What LQ scenario for R_{k} and R_{k} ?

$$
\mathcal{L}=x_{L}^{i j} \bar{Q}_{i} \gamma_{\mu} U_{1}^{\mu} L_{j}+x_{R}^{i j} \bar{d}_{R i} \gamma_{\mu} U_{1}^{\mu} \ell_{R j}+\text { h.c. },
$$

Assumptions:

$$
x_{L}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & x_{L}^{s \mu} & x_{L}^{s \tau} \\
0 & x_{L}^{b \mu} & x_{L}^{b \tau}
\end{array}\right), \quad \quad x_{R} \approx 0 .
$$

$$
\begin{aligned}
\bullet b & \rightarrow c \tau \bar{\nu}: \\
g_{V_{L}} & =\frac{v^{2}}{2 m_{U_{1}}^{2}}\left(x_{L}^{b \tau}\right)^{*}\left(x_{L}^{b \tau}+\frac{V_{c s}}{V_{c b}} x_{L}^{s \tau}\right) \neq 0
\end{aligned}
$$

- $b \rightarrow s \mu \mu$:

$$
x_{L}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & x_{L}^{s \mu} & x_{L}^{s \tau} \\
0 & x_{L}^{b \mu} & x_{L}^{b \tau}
\end{array}\right)
$$

$C_{9}^{\mu \mu}=-C_{10}^{\mu \mu} \propto-\frac{\pi v^{2}}{m_{U_{1}}^{2}}\left(x_{L}^{b \mu}\right)^{*} x_{L}^{s \mu} \neq 0$

- Other observables: $\tau \rightarrow \mu \phi, B \rightarrow \tau \bar{\nu}, D_{(s)} \rightarrow \mu \bar{\nu}, D_{s} \rightarrow \tau \bar{\nu}$, $K \rightarrow \mu \bar{\nu} / K \rightarrow e \bar{\nu}, \tau \rightarrow K \bar{\nu}$ and $B \rightarrow D^{(*)} \mu \bar{\nu} / B \rightarrow D^{(*)} e \bar{\nu}$.
- LQ pair-production via QCD:

- Di-lepton tails at high-pT:

Angelescu et al '18, Faroughy et al '15
[CMS-PAS-EXO-17-003]

$$
m_{U_{1}} \gtrsim 1.5 \mathrm{TeV}
$$

[assuming $\left.\mathcal{B}\left(U_{1} \rightarrow b \tau\right) \approx 0.5\right]$
[ATLAS. 1707.02424,1709.07242]

$$
\mathcal{B}(B \rightarrow K \mu \tau) \gtrsim \text { few } \times 10^{-7}
$$

UV completion:

- Pati-Salam group, $\mathcal{G}_{\mathrm{PS}}=S U(4) \times S U(2)_{L} \times S U(2)_{R}$, contains $U_{1}=(3,1,2 / 3)$.
- Viable extensions of $\mathcal{G}_{\mathrm{PS}}$ at the TeV scale have been proposed: $\Rightarrow U_{1}+Z^{\prime}+g^{\prime}$ [+new fermions].

Back to SLQ's

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \& R_{K^{(*)}}$
$S_{1}=(\overline{3}, 1,1 / 3)$	\checkmark	x	x
$R_{2}=(3,2,7 / 6)$	\checkmark	\checkmark^{*}	x
$S_{3}=(\overline{3}, 3,1 / 3)$	x	\checkmark	x
$U_{1}=(3,1,2 / 3)$	\checkmark	\checkmark	\checkmark
$U_{3}=(3,3,2 / 3)$	x	\checkmark	x

Observable
$b \rightarrow s \mu \mu$
$b \rightarrow c \tau \nu$
$\mathcal{B}(\tau \rightarrow \mu \phi)$
$\mathcal{B}(B \rightarrow \tau \nu)$
$\mathcal{B}\left(D_{s} \rightarrow \mu \nu\right)$
$\mathcal{B}\left(D_{s} \rightarrow \tau \nu\right)$
$r_{K}^{e / \mu}$
$r_{K}^{\tau / \mu}$
$R_{D}^{\mu / e}$

$Z \rightarrow \ell \ell$ and $Z \rightarrow \nu \nu$

Arnan, D.B., Mescia, Sumensari '19 [arXiv:1901.06315]

$$
\delta \mathcal{L}_{\text {eff }}^{Z}=\frac{g}{\cos \theta_{W}} \sum_{f, i, j} \bar{f}_{i} \gamma^{\mu}\left[g_{f_{L}}^{i j} P_{L}+g_{f_{R}}^{i j} P_{R}\right] f_{j} Z_{\mu}
$$

$$
g_{f_{L(R)}}^{i j}=\delta_{i j} g_{f_{L(R)}}^{\mathrm{SM}}+\delta g_{f_{L(R)}}^{i j}: \quad \begin{aligned}
& g_{f_{L}}^{\mathrm{SM}}=I_{3}^{f}-Q^{f} \sin ^{2} \theta_{W} \\
& g_{f_{R}}^{\mathrm{SM}}=-Q^{f} \sin ^{2} \theta_{W}
\end{aligned}
$$

$$
\begin{aligned}
& g_{V}^{e, \exp }=-0.03817(47) \\
& g_{V}^{\mu, \exp }=-0.0367(23) \\
& g_{V}^{\tau, \exp }=-0.0366(10)
\end{aligned}
$$

$$
g_{A}^{e, \exp }=-0.50111(35)
$$

$$
\begin{aligned}
g_{A}^{\mu, \exp } & =-0.50120(54) \\
g_{A}^{\tau, \exp } & =-0.50204(64)
\end{aligned}
$$

Not in Phys.Rep. by Dorsner et al '16

$$
\delta \mathcal{L}_{\mathrm{eff}}^{Z}=\frac{g}{\cos \theta_{W}} \sum_{f, i, j} \bar{f}_{i} \gamma^{\mu}\left[g_{f_{L}}^{i j} P_{L}+g_{f_{R}}^{i j} P_{R}\right] f_{j} Z_{\mu}
$$

$$
g_{f_{L(R)}}^{i j}=\delta_{i j} g_{f_{L(R)}}^{\mathrm{SM}}+\delta g_{f_{L(R)}}^{i j}
$$

$$
\begin{aligned}
& g_{f_{L}^{\mathrm{SM}}}=I_{3}^{f}-Q^{f} \sin ^{2} \theta_{W} \\
& g_{f_{R}}^{\mathrm{SM}}=-Q^{f} \sin ^{2} \theta_{W}
\end{aligned}
$$

LLA: $\mathcal{O}\left(x_{t} \log x_{t}\right), \mathcal{O}\left(x_{Z} \log x_{Z}\right)$

$$
x_{j}=m_{j}^{2} / m_{\Delta}^{2}
$$

Feruglio et al. '17 and '18
Full: most significant $\mathcal{O}\left(x_{Z} \log x_{t}\right)$

$$
\mathcal{L}_{R_{2}}=y_{R}^{i j} \bar{Q}_{i} \ell_{R j} R_{2}-y_{L}^{i j} \bar{u}_{R i} R_{2} i \tau_{2} L_{j}+\text { h.c. }
$$

$C_{9}^{k l}=C_{10}^{k l} \stackrel{\text { tree }}{=}-\frac{\pi v^{2}}{2 V_{t b} V_{t s}^{*} \alpha_{\mathrm{em}}} \frac{y_{R}^{s l}\left(y_{R}^{b k}\right)^{*}}{m_{R_{2}}^{2}}$.
$C_{9}^{k l}=-C_{10}^{k l} \stackrel{\text { loop }}{=} \sum_{u, u^{\prime} \in\{u, c, t\}} \frac{V_{u b} V_{u^{\prime} s}^{*}}{V_{t b} V_{t s}^{*}} y_{L}^{u^{\prime} k}\left(y_{L}^{u l}\right)^{*} \mathcal{F}\left(x_{u}, x_{u^{\prime}}\right)$

$$
y_{L}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & y_{L}^{c \mu} & 0 \\
0 & y_{L}^{t \mu} & 0
\end{array}\right), \quad \quad y_{R}=0
$$

Accommodating all of them $-\mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}^{*}}, \mathrm{R}_{\mathrm{K}}, \mathrm{R}_{\mathrm{k}^{*}}$

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \& R_{K^{(*)}}$
$S_{1}=(\overline{3}, 1,1 / 3)$	\checkmark	x	x
$R_{2}=(3,2,7 / 6)$	\checkmark	\checkmark^{*}	x
$S_{3}=(\overline{3}, 3,1 / 3)$	x	\checkmark	x
$U_{1}=(3,1,2 / 3)$	\checkmark	\checkmark	\checkmark
$U_{3}=(3,3,2 / 3)$	x	\checkmark	x

- Two scalar LQs can also do the job (no extra parameters):
$\Rightarrow S_{1}$ and S_{3} [Crivellin et al. '17, Marzocca. '18], R_{2} and $S_{3} \quad$ D.B. et al '18

$\mathrm{S}_{3} \& \mathrm{R}_{2}$ Model

D.B., Dorsner, Fajfer, Faroughy, Kosnik, Sumensari '18 [arXiv:1806.05689]

- In flavor basis

$$
\begin{array}{r}
\mathcal{L} \supset y_{R}^{i j} \bar{Q}_{i} \ell_{R j} R_{2}+y_{L}^{i j} \bar{u}_{R i} L_{j} \widetilde{R}_{2}^{\dagger}+y^{i j} \bar{Q}_{i}^{C} i \tau_{2}\left(\tau_{k} S_{3}^{k}\right) L_{j}+\text { h.c. } \\
R_{2}=(3,2,7 / 6), S_{3}=(\overline{3}, 3,1 / 3)
\end{array}
$$

- In mass-eigenstates basis

$$
\begin{aligned}
\mathcal{L} \supset & \left(V_{\mathrm{CKM}} y_{R} E_{R}^{\dagger}\right)^{i j} \bar{u}_{L i}^{\prime} \ell_{R j}^{\prime} R_{2}^{(5 / 3)}+\left(y_{R} E_{R}^{\dagger}\right)^{i j} \bar{d}_{L i}^{\prime} \ell_{R j}^{\prime} R_{2}^{(2 / 3)} \\
& +\left(U_{R} y_{L} U_{\mathrm{PMNS}}\right)^{i j} \bar{u}_{R i}^{\prime} \nu_{L j}^{\prime} R_{2}^{(2 / 3)}-\left(U_{R} y_{L}\right)^{i j} \bar{u}_{R i}^{\prime} \ell_{L j}^{\prime} R_{2}^{(5 / 3)} \\
& -\left(y U_{\mathrm{PMNS}}\right)^{i j} \bar{d}_{L i}^{\prime C} \nu_{L j}^{\prime} S_{3}^{(1 / 3)}-\sqrt{2} y^{i j} \bar{d}_{L i}^{\prime C} \ell_{L j}^{\prime} S_{3}^{(4 / 3)} \\
+ & \sqrt{2}\left(V_{\mathrm{CKM}}^{*} y U_{\mathrm{PMNS}}\right)_{i j} \bar{u}_{L i}^{\prime C} \nu_{L j}^{\prime} S_{3}^{(-2 / 3)}-\left(V_{\mathrm{CKM}}^{*} y\right)_{i j} \bar{u}_{L i}^{\prime C} \ell_{L j}^{\prime} S_{3}^{(1 / 3)}+\text { h.c. }
\end{aligned}
$$

and assume

$$
\underline{y_{R}=y_{R}^{T}} \quad y=-y_{L}
$$

$y_{R} E_{R}^{\dagger}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{R}^{b \tau}\end{array}\right), U_{R} y_{L}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & y_{L}^{c \mu} & y_{L}^{c \tau} \\ 0 & 0 & 0\end{array}\right), U_{R}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)$

Parameters: $m_{R_{2}}, m_{S_{3}}, y_{R}^{b \tau}, y_{L}^{c \mu}, y_{L}^{c \tau}$ and θ

Effective Lagrangian at $\mu \approx m_{\mathrm{LQ}}$:

- $b \rightarrow c \tau \bar{\nu}$:

NB. $\Lambda_{\mathrm{NP}} / g_{\mathrm{NP}} \approx 1 \mathrm{TeV}$

$$
\propto \frac{y_{L}^{c \tau} y_{R}^{b \tau *}}{m_{R_{2}}^{2}}\left[\left(\bar{c}_{R} b_{L}\right)\left(\bar{\tau}_{R} \nu_{L}\right)+\frac{1}{4}\left(\bar{c}_{R} \sigma_{\mu \nu} b_{L}\right)\left(\bar{\tau}_{R} \sigma^{\mu \nu} \nu_{L}\right)\right]+\ldots
$$

- $b \rightarrow s \mu \mu$:

NB. $\Lambda_{\mathrm{NP}} / g_{\mathrm{NP}} \approx 30 \mathrm{TeV}$

$$
\propto \sin 2 \theta \frac{\left|y_{L}^{c \mu}\right|^{2}}{m_{S_{3}}^{2}}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu}_{L} \gamma_{\mu} \mu_{L}\right)
$$

- $\Delta m_{B_{s}}$:

$$
\propto \sin ^{2} 2 \theta \frac{\left[\left(y_{L}^{c \mu}\right)^{2}+\left(y_{L}^{c \tau}\right)^{2}\right]^{2}}{m_{S_{3}}^{2}}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)^{2}
$$

\Rightarrow Suppression mechanism of $b \rightarrow s \mu \mu$ wrt $b \rightarrow c \tau \bar{\nu}$ for $\operatorname{small} \sin 2 \theta$.
\Rightarrow Phenomenology suggests $\theta \approx \pi / 2$ and $y_{R}^{b \tau}$ complex

Bounds should be less stringent when considering propagating LQ!

Simple and viable $S U(5)$ GUT

- Choice of Yukawas was biased by $S U(5)$ GUT aspirations
- Scalars: $R_{2} \in \underline{\mathbf{4 5}}, \underline{\mathbf{5 0}}, S_{3} \in \underline{45}$. SM matter fields in $\mathbf{5}_{i}$ and $\mathbf{1 0}_{i}$
- Operators $\mathbf{1 0}_{i} \mathbf{1 0}_{j} \underline{\mathbf{4 5}}$ forbidden to prevent proton decay [Dorsner et al 2017]
- Available operators

$$
\begin{aligned}
\mathbf{1 0}_{i} \mathbf{5}_{j} \underline{\mathbf{4 5}:} & y_{2}^{R L} \bar{u}_{R}^{i} R_{2}^{a} \varepsilon^{a b} L_{L}^{j, b}, \quad y_{3 i j}^{L L}{\overline{Q^{C}}}_{L}^{i, a} \varepsilon^{a b}\left(\tau^{k} S_{3}^{k}\right)^{b c} L_{L}^{j, c} \\
\mathbf{1 0}_{i} \mathbf{1 0}_{j} \underline{\mathbf{5 0}:} & y_{2}^{L R}{ }_{i j} \bar{e}_{R}^{i} R_{2}^{a *} Q_{L}^{j, a}
\end{aligned}
$$

- While breaking $S U(5)$ down to SM the two R_{2} 's mix - one can be light and the other (very) heavy. Thus our initial Lagrangian!
- The Yukawas determined from flavor physics observables at low energy remain perturbative ($\lesssim \sqrt{4 \pi}$) up to the GUT scale, using one-loop running

Summary and perspectives

- Flavor anomalies are still there but the experimental situation unclear. Needs clarification from Belle-II!
- Many questions could be answered if we had exp. info on $b \rightarrow s \tau \tau$ modes, eg. $B \rightarrow K^{(*)} \tau \tau$. Improving $\mathcal{B}\left(B \rightarrow K^{(*)} \tau \mu\right)$ - very helpful to model builders.

Belle-II and FCC

- (Even partial) angular distributions of $B_{(s)} \rightarrow D_{(s)}^{(*)} \tau \nu_{\tau}, B_{c} \rightarrow J / \psi \tau \nu_{\tau}$ and $\Lambda_{b} \rightarrow \Lambda_{c}^{(*)} \tau \nu_{\tau}$ could help discriminating among various NP scenarios.

LHCb and Belle II but FCC

- Viable single mediator explanations to $R_{K^{(*)}}$ and/or $R_{D^{(*)}}$ (and friends). Only the vector U_{1} is viable. Two scalar LQs can do the job too.
- Many scenarios with upper and lower bounds for $\mathcal{B}(Z \rightarrow \tau \mu)$. Can someone measure $\mathcal{B}(Z \rightarrow \tau \tau)$ and $\mathcal{B}\left(W \rightarrow \tau \nu_{\tau}\right)$?

