B-physics and viable NP(LQ) scenarios

Damir Bečirević

Pôle Théorie, IJCLab CNRS et Université Paris-Saclay

based on works done with

A. Angelescu, P. Arnan, I. Doršner, S. Fajfer, D. Faroughy, N. Košnik, F. Mescia, O. Sumensari, R. Zukanovich-Funchal

Turn of the 21st century CKM

Impressively — TL UT and LP UT agree to less than 10% CPV phase is non-zero but too small to accommodate the observes BAU

[Experiment - high precision era! Lattices huge improvement!]
Only tensions in Vub and Vcb (inclusive Vs. exclusive) but all in all, CKM is very unitary!
2008, Nobel Prize

Impressive progress in LQCD

Impressive progress in LQCD

 $f_{B_s} = 230.3 \pm 1.3 \text{ MeV}$

< 0.6% -precision!

Or else... NP searches

Strategy:

fix Vij from tree level processes, then look for NP in FCNC

$$\mathcal{B}(B_s \to \mu^+ \mu^-)_{\text{theo.}} = 3.34 \, \binom{+13}{-25} \times 10^{-9} \quad \mathcal{B}(B_s \to \mu^+ \mu^-)_{\text{LHCb+CMS}} = 2.9(7) \times 10^{-9}$$

$$C_{ij}$$
 1 $V_{ti}V_{tj}^*$ $B_s \to \mu^+\mu^-$ > 10 TeV > 2.5 TeV $K \to \pi\nu\bar{\nu}$ > 100 TeV > 1.8 TeV

$$O = \frac{1}{\Lambda^2} C_{ij} \bar{Q}_i \gamma^\mu Q_j H^\dagger D_\mu H$$

Strategy: fix V_{ij} by tree level processes, then look for NP in FCNC

$$O = \frac{1}{\Lambda^2} C'_{ij} \bar{Q}_i \gamma^\mu Q_j \bar{Q}_i \gamma_\mu Q_j$$

$$C'_{ij}$$
 1 $|V_{ti}V_{tj}^*|^2$
 $K^0 - \overline{K}^0$ > $2 \times 10^4 \text{ TeV}$ > 8 TeV
 $B^0 - \overline{B}^0$ > $0.5 \times 10^4 \text{ TeV}$ > 5 TeV
 $B_s^0 - \overline{B}_s^0$ > $0.1 \times 10^4 \text{ TeV}$ > 5 TeV

Flavor puzzle

$$C_{ij}$$
 1 $V_{ti}V_{tj}^*$ $B_s \rightarrow \mu^+\mu^-$ > 10 TeV > 2.5 TeV $K \rightarrow \pi\nu\bar{\nu}$ > 100 TeV > 1.8 TeV

C_{ij}'	1	$ V_{ti}V_{tj}^* ^2$
$K^0 - \overline{K}^0$	$> 2 \times 10^4 \text{ TeV}$	> 8 TeV
$B^0 - \overline{B}^0$	$> 0.5 \times 10^4 \text{ TeV}$	> 5 TeV
$B_s^0 - \overline{B}_s^0$	$> 0.1 \times 10^4 \text{ TeV}$	> 5 TeV

- For natural C~O(1), NP scale is huge
- Need lots of fine tuning to reduce NP scale to O(1TeV) as needed to mend the hierarchy problem
- Way out: NP is (almost) aligned with the SM
- · MFV

2012 - 202X : LFUV was and still is exciting

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu})} \& R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM}$$

$$\left[\left. R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} ee)} \right|_{q^2 \in [q_{\min}^2, q_{\max}^2]} \& \quad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{\operatorname{SM}} \right]$$

Also corroborated by LHCb through $R_{J/\psi}^{\rm exp}>R_{J/\psi}^{\rm SM}$, $R_{pK}^{\rm exp}>R_{pK}^{\rm SM}$

$$R_{D^{(*)}}^{
m exp} > R_{D^{(*)}}^{
m SM} \quad \Rightarrow \quad \Lambda_{
m NP} \lesssim 3 \ {
m TeV}$$
 $R_{K^{(*)}}^{
m exp} < R_{K^{(*)}}^{
m SM} \quad \Rightarrow \quad \Lambda_{
m NP} \lesssim 30 \ {
m TeV}$ Di Luzio et al. 2017

After Moriond EW 2019

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(B \to D^{(*)}\ell\bar{\nu})}.$$

- NEW [Belle]: $R_D = 0.31(4)$, $R_{D^*} = 0.28(2)$.
- $R_{D^{(*)}}$ discrepancy w.r.t. SM predictions decreases from 3.8σ to 3.1σ .
- Large disagreement between BaBar and Belle results.
- ⇒ Unclear exp. situation!

After Moriond EW 2019

• NEW [LHCb]:

$$[R_K^{\text{new}}]_{\text{avg}} = 0.85(6)$$

• Discrepancy between Run 1 and Run 2 [$\approx 2\sigma$]:

$$[R_K^{\rm new}]_{\rm run\ 1} = 0.71(8)$$

$$[R_K^{
m new}]_{
m run~2} = 0.92(8)$$

EFT - exclusive $b \to c \ell \nu$

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1 + g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$$

- $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge invariance:
 - $\Rightarrow g_{V_R}$ is LFU at dimension 6 ($W\bar{c}_R b_R$ vertex).
 - \Rightarrow Four coefficients left: g_{V_L} , g_{S_L} , g_{S_R} and g_T .
- Several viable solutions to $R_{D^{(*)}}$:

∘ e.g. g_{V_L} ∈ (0.04, 0.11), but not only!

[Freytsis et al. 2015]

Which coupling? Situation after Moriond EW 2019

Updates of Freytsis et al. '15 Angelescu et al. '18

Which Lorentz structure to pick?

Observables from angular distribution of $B \to D^*(D\pi)\ell\nu$ can help

- WORK IN PROGRESS

What LQ scenario for R_D and R_{D*}?

Model	$g_{\rm eff}^{b \to c \tau \bar{\nu}} (\mu = m_{\Delta})$	$R_{D^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	g_{V_L} , $g_{S_L}=-4g_T$	✓
$R_2 = (3, 2, 7/6)$	$g_{S_L} = 4 g_T$	✓
$S_3 = (\bar{3}, 3, 1/3)$	g_{V_L}	X
$U_1 = (3, 1, 2/3)$	g_{V_L} , g_{S_R}	✓
$U_3 = (3, 3, 2/3)$	g_{V_L}	X

Viable models for $R_{D^{(*)}}$:

- U_1 (g_{V_L}) , S_1 $(g_{V_L}$ and $g_{S_L}=-4g_T)$, and R_2 $(g_{S_L}=4g_T\in\mathbb{C})$
- Some models are excluded by other flavor constraints: $B \to K \nu \bar{\nu}$, $\Delta m_{B_s}...$
- Possibility to distinguish them by using other $b \to c \ell \nu$ observables!

EFT - exclusive $b \to s\ell\ell$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S,\dots} \left(C_i(\mu) \mathcal{O}_i + C_i'(\mu) \mathcal{O}_i' \right) \right] + \text{h.c.}$$

$$\mathcal{O}_{9}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell) \qquad \mathcal{O}_{10}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma^{5}\ell) \\
\mathcal{O}_{S}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell) \qquad \mathcal{O}_{P}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell) \\
\mathcal{O}_{7}^{(\prime)} = m_{b}(\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu}$$

$$\mathcal{B}(B_s \to \mu \mu)^{\text{exp}} = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$$
 [LHCb, '17], [CMS, Atlas. '18]

Fit to clean quantities: $\mathcal{B}(B_s \to \mu \mu)$ and $R_{K^{(*)}}$

- Only vector (axial) coefficients can accommodate data.
- \bullet $C_{9,10}'$ disfavored by $R_{K^*}^{\mathrm{exp}} < R_{K^*}^{\mathrm{SM}}$
- $C_9 = -C_{10}$ allowed consistent with a left-handed $SU(2)_L$ invariant operator!

What LQ scenario for R_K and R_{K*}?

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \& R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	✓	X	X
$R_2 = (3, 2, 7/6)$	✓	✓ *	X
$S_3 = (\bar{3}, 3, 1/3)$	X	✓	X
$U_1 = (3, 1, 2/3)$	✓	✓	✓
$U_3 = (3, 3, 2/3)$	X	✓	X

N.B. U₁ is the only one to accommodate both!

Observable
$b \rightarrow s \mu \mu$
$b \to c au u$
$B(\tau \rightarrow \mu \phi)$
$\mathcal{B}(B \to \tau \nu)$
$\mathcal{B}(D_s \to \mu\nu)$
$\mathcal{B}(D_s \to \tau \nu)$
$r_K^{e/\mu}$
$r_K^{ au/\mu}$
$R_D^{\mu/e}$

$$U_1$$

$$\mathcal{L} = \mathbf{x}_{L}^{ij} \, \bar{Q}_{i} \gamma_{\mu} \, U_{1}^{\mu} L_{j} + \mathbf{x}_{R}^{ij} \, \bar{d}_{Ri} \gamma_{\mu} \, U_{1}^{\mu} \ell_{Rj} + \text{h.c.} \,,$$

Assumptions:

$$x_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & x_L^{s\mu} & x_L^{s\tau} \\ 0 & x_L^{b\mu} & x_L^{b\tau} \end{pmatrix}, \qquad x_R \approx 0.$$

• $b \to c \tau \bar{\nu}$:

$$g_{V_L} = \frac{v^2}{2m_{U_1}^2} (x_L^{b\tau})^* \left(x_L^{b\tau} + \frac{V_{cs}}{V_{cb}} x_L^{s\tau} \right) \neq 0$$

• $b \rightarrow s\mu\mu$:

$$C_9^{\mu\mu} = -C_{10}^{\mu\mu} \propto -\frac{\pi v^2}{m_{U_1}^2} (x_L^{b\mu})^* x_L^{s\mu} \neq 0$$

• Other observables: $\tau \to \mu \phi$, $B \to \tau \bar{\nu}$, $D_{(s)} \to \mu \bar{\nu}$, $D_s \to \tau \bar{\nu}$, $K \to \mu \bar{\nu}/K \to e \bar{\nu}$, $\tau \to K \bar{\nu}$ and $B \to D^{(*)} \mu \bar{\nu}/B \to D^{(*)} e \bar{\nu}$.

 $x_L = \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & x_L^{s\mu} & x_L^{s au} \ 0 & x_L^{b\mu} & x_L^{b au} \end{array}
ight)$

LQ pair-production via QCD:

 $m_{U_1}\gtrsim 1.5\;{\sf TeV}$

[CMS-PAS-EXO-17-003]

[assuming $\mathcal{B}(U_1 \to b\tau) \approx 0.5$]

[ATLAS. 1707.02424,1709.07242]

• Di-lepton tails at high-pT:

Angelescu et al '18, Faroughy et al '15

3.5 3.0

U_1

$$\mathcal{B}(B \to K \mu \tau) \gtrsim \text{few} \times 10^{-7}$$

UV completion:

- Pati-Salam group, $\mathcal{G}_{PS} = SU(4) \times SU(2)_L \times SU(2)_R$, contains $U_1 = (3,1,2/3)$.
- Viable extensions of $\mathcal{G}_{\mathrm{PS}}$ at the TeV scale have been proposed:

$$\Rightarrow$$
 $U_1+Z'+g'$ [+new fermions]. Di Luzio et al '17, Bordone et al. '17, Cornella et al '19

Back to SLQ's

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \& R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	✓	X	X
$R_2 = (3, 2, 7/6)$	✓	√ *	×
$S_3 = (\bar{3}, 3, 1/3)$	X	✓	×
$U_1 = (3, 1, 2/3)$	✓	✓	✓
$U_3 = (3, 3, 2/3)$	X	✓	×

$b \rightarrow s\mu\mu$ $b \rightarrow c\tau\nu$ $\mathcal{B}(\tau \rightarrow \mu\phi)$ $\mathcal{B}(B \rightarrow \tau\nu)$ $\mathcal{B}(D_s \rightarrow \mu\nu)$ $\mathcal{B}(D_s \rightarrow \tau\nu)$ $r_K^{e/\mu}$

Observable

$Z \to \ell\ell$ and $Z \to \nu\nu$

Arnan, D.B., Mescia, Sumensari '19 [arXiv:1901.06315]

$$\delta \mathcal{L}_{\text{eff}}^{Z} = \frac{g}{\cos \theta_W} \sum_{f,i,j} \bar{f}_i \gamma^{\mu} \Big[g_{f_L}^{ij} P_L + g_{f_R}^{ij} P_R \Big] f_j Z_{\mu}$$

$$g_{f_{L(R)}}^{ij} = \delta_{ij} g_{f_{L(R)}}^{SM} + \delta g_{f_{L(R)}}^{ij}$$

$$g_{f_{R}}^{SM} = I_{3}^{f} - Q^{f} \sin^{2} \theta_{W}$$

$$g_{f_{R}}^{SM} = -Q^{f} \sin^{2} \theta_{W}$$

$$g_V^{e, \exp} = -0.03817(47)$$
 $g_A^{e, \exp} = -0.50111(35)$
 $g_V^{\mu, \exp} = -0.0367(23)$ $g_A^{\mu, \exp} = -0.50120(54)$
 $g_V^{\tau, \exp} = -0.0366(10)$ $g_A^{\tau, \exp} = -0.50204(64)$

$$\delta \mathcal{L}_{\text{eff}}^{Z} = \frac{g}{\cos \theta_W} \sum_{f,i,j} \bar{f}_i \gamma^{\mu} \Big[g_{f_L}^{ij} P_L + g_{f_R}^{ij} P_R \Big] f_j Z_{\mu}$$

$$g_{f_{L(R)}}^{ij} = \delta_{ij} g_{f_{L(R)}}^{SM} + \delta g_{f_{L(R)}}^{ij}$$

Arnan, D.B., Mescia, Sumensari '19 [arXiv:1901.06315]

 $g_{fL}^{\rm SM} = I_3^f - Q^f \sin^2 \theta_W$ $g_{f_R}^{\rm SM} = -Q^f \sin^2 \theta_W$

LLA: $\mathcal{O}(x_t \log x_t)$, $\mathcal{O}(x_Z \log x_Z)$ $x_j = m_j^2/m_\Delta^2$

Feruglio et al. '17 and '18

Full: most significant $\mathcal{O}(x_Z \log x_t)$

$$\mathcal{L}_{R_2} = y_R^{ij} \, \overline{Q}_i \ell_{Rj} \, R_2 - y_L^{ij} \, \overline{u}_{Ri} R_2 i \tau_2 L_j + \text{h.c.}$$

$$C_9^{kl} = C_{10}^{kl} \stackrel{\text{tree}}{=} -\frac{\pi v^2}{2V_{tb}V_{ts}^*\alpha_{\text{em}}} \frac{y_R^{sl}(y_R^{bk})^*}{m_{R_2}^2}$$

$$C_9^{kl} = -C_{10}^{kl} \stackrel{\text{loop}}{=} \sum_{u,u' \in \{u,c,t\}} \frac{V_{ub}V_{u's}^*}{V_{tb}V_{ts}^*} y_L^{u'k} \left(y_L^{ul}\right)^* \mathcal{F}(x_u, x_{u'})$$

$$y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_L^{c\mu} & 0 \\ 0 & y_L^{t\mu} & 0 \end{pmatrix} , \qquad y_R = 0$$

Accommodating all of them - R_D , R_{D^*} , R_K , R_{K^*}

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \& R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	√	X	X
$R_2 = (3, 2, 7/6)$	✓	√ *	X
$S_3 = (\bar{3}, 3, 1/3)$	X	✓	X
$U_1 = (3, 1, 2/3)$	√	✓	✓
$U_3 = (3, 3, 2/3)$	X	✓	X

- Two scalar LQs can also do the job (no extra parameters):
 - \Rightarrow S_1 and S_3 [Crivellin et al. '17, Marzocca. '18], R_2 and S_3 D.B. et al '18

S₃ & R₂ Model

D.B., Dorsner, Fajfer, Faroughy, Kosnik, Sumensari '18 [arXiv:1806.05689]

In flavor basis

$$\mathcal{L} \supset y_R^{ij} \, \bar{Q}_i \ell_{Rj} R_2 + y_L^{ij} \, \bar{u}_{Ri} L_j \tilde{R}_2^{\dagger} + y^{ij} \, \bar{Q}_i^{C} i \tau_2 (\tau_k S_3^k) L_j + \text{h.c.}$$

$$R_2 = (3, 2, 7/6), \, S_3 = (\bar{3}, 3, 1/3)$$

In mass-eigenstates basis

$$\mathcal{L} \supset (V_{\text{CKM}} y_R E_R^{\dagger})^{ij} \bar{u}'_{Li} \ell'_{Rj} R_2^{(5/3)} + (y_R E_R^{\dagger})^{ij} \bar{d}'_{Li} \ell'_{Rj} R_2^{(2/3)}$$

$$+ (U_R y_L U_{\text{PMNS}})^{ij} \bar{u}'_{Ri} \nu'_{Lj} R_2^{(2/3)} - (U_R y_L)^{ij} \bar{u}'_{Ri} \ell'_{Lj} R_2^{(5/3)}$$

$$- (y U_{\text{PMNS}})^{ij} \bar{d}'_{Li}^C \nu'_{Lj} S_3^{(1/3)} - \sqrt{2} y^{ij} \bar{d}'_{Li}^C \ell'_{Lj} S_3^{(4/3)}$$

$$+ \sqrt{2} (V_{\text{CKM}}^* y U_{\text{PMNS}})_{ij} \bar{u}'_{Li}^C \nu'_{Lj} S_3^{(-2/3)} - (V_{\text{CKM}}^* y)_{ij} \bar{u}'_{Li}^C \ell'_{Lj} S_3^{(1/3)} + \text{h.c.}$$

and assume

$$y_R = y_R^T \qquad y = -y_L$$

$$y_R E_R^{\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \ U_R y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_L^{c\mu} & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}, \ U_R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

Parameters: m_{R_2} , m_{S_3} , $y_R^{b\tau}$, $y_L^{c\mu}$, $y_L^{c\tau}$ and θ

Effective Lagrangian at $\mu \approx m_{\rm LQ}$:

• $b \rightarrow c\tau\bar{\nu}$:

NB. $\Lambda_{\rm NP}/g_{\rm NP}\approx 1~{\rm TeV}$

$$\propto \frac{y_L^{c\tau} y_R^{b\tau*}}{m_{R_2}^2} \left[(\bar{c}_R b_L)(\bar{\tau}_R \nu_L) + \frac{1}{4} (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\tau}_R \sigma^{\mu\nu} \nu_L) \right] + \dots$$

• $b \rightarrow s\mu\mu$:

NB. $\Lambda_{\rm NP}/g_{\rm NP} \approx 30 \text{ TeV}$

$$\propto \sin 2 heta \, rac{|y_L^{c\mu}|^2}{m_{S_3}^2} \, (ar s_L \gamma^\mu \, b_L) (ar \mu_L \gamma_\mu \mu_L)$$

 $\bullet \ \Delta m_{B_s}$:

$$\propto \sin^2 2\theta \; \frac{\left[\left(y_L^{c\mu} \right)^2 + \left(y_L^{c\tau} \right)^2 \right]^2}{m_{S_3}^2} (\bar{s}_L \gamma^{\mu} b_L)^2$$

- \Rightarrow Suppression mechanism of $b \to s \mu \mu$ wrt $b \to c \tau \bar{\nu}$ for small $\sin 2\theta$. \Rightarrow Phenomenology suggests $\theta \approx \pi/2$ and $y_R^{b\tau}$ complex

Bounds should be less stringent when considering propagating LQ!

Greljo et al. '18

Simple and viable SU(5) GUT

- Choice of Yukawas was biased by SU(5) GUT aspirations
- Scalars: $R_2 \in \underline{45}, \underline{50}, S_3 \in \underline{45}$. SM matter fields in S_i and S_i
- Operators $10_i 10_j 45$ forbidden to prevent proton decay [Dorsner et al 2017]
- Available operators

$$\mathbf{10}_{i}\mathbf{5}_{j}\underline{\mathbf{45}}: \quad y_{2\ ij}^{RL}\ \overline{u}_{R}^{i}R_{2}^{a}\varepsilon^{ab}L_{L}^{j,b}, \quad y_{3ij}^{LL}\ \overline{Q^{C}}_{L}^{i,a}\varepsilon^{ab}(\tau^{k}S_{3}^{k})^{bc}L_{L}^{j,c}$$

$$\mathbf{10}_{i}\mathbf{10}_{j}\underline{\mathbf{50}}: \quad y_{2\ ij}^{LR}\ \overline{e}_{R}^{i}R_{2}^{a}*Q_{L}^{j,a}$$

- While breaking SU(5) down to SM the two R_2 's mix one can be light and the other (very) heavy. Thus our initial Lagrangian!
- The Yukawas determined from flavor physics observables at low energy remain perturbative ($\lesssim \sqrt{4\pi}$) up to the GUT scale, using one-loop running

Summary and perspectives

Flavor anomalies are still there but the experimental situation unclear.

Needs clarification from Belle-II!

• Many questions could be answered if we had exp. info on $b \to s\tau\tau$ modes, eg. $B \to K^{(*)}\tau\tau$. Improving $\mathcal{B}(B \to K^{(*)}\tau\mu)$ – very helpful to model builders.

Belle-II and FCC

• (Even partial) angular distributions of $B_{(s)} \to D_{(s)}^{(*)} \tau \nu_{\tau}$, $B_c \to J/\psi \tau \nu_{\tau}$ and $\Lambda_b \to \Lambda_c^{(*)} \tau \nu_{\tau}$ could help discriminating among various NP scenarios.

LHCb and Belle II but FCC

- Viable single mediator explanations to $R_{K^{(*)}}$ and/or $R_{D^{(*)}}$ (and friends). Only the vector U_1 is viable. Two scalar LQs can do the job too.
- Many scenarios with upper and lower bounds for $\mathcal{B}(Z \to \tau \mu)$. Can someone measure $\mathcal{B}(Z \to \tau \tau)$ and $\mathcal{B}(W \to \tau \nu_{\tau})$?