Jets measurements requirements for Higgs boson physics at FCC (ee)

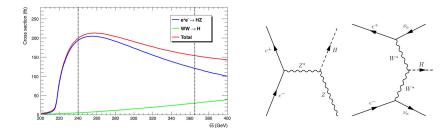
Gérald Grenier

Institut de Physique des 2 Infinis de Lyon (IP2I)

Workshop FCC France, Online May 14-15, 2020

Future collider projects

- \bullet Rough historical view: TESLA \rightarrow ILC/CLIC \rightarrow CEPC/FCC -ee
- ILC Energy plan:
 - 91 GeV/ 250 GeV/ 350-400 GeV
 - $\blacktriangleright\,$ then 500 GeV \rightarrow 1 TeV
- FCC Energy plan:
 - 91 GeV/ 240 GeV/ 350-365 GeV
 - then FCC-hh

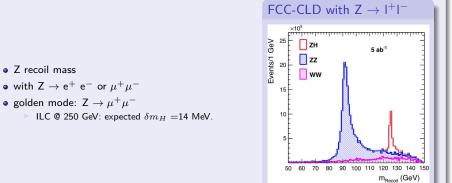

Main differences

- FCC has higher instantaneous and integrated luminosity.
- ILC has beam polarisation.

Similar physics

ILC jets requirements \sim FCC-ee jets requirements.

Higgs at \sqrt{s} =240-250 GeV


Higgsstrahlung

- Dominant production mode.
- FCC luminosity 5 ab⁻¹.

- $\bullet~\mbox{Cross-section}$ \sim 200 fb.
- One million Higgses.

Higgs mass

 $e^+ \; e^- \to HZ$

No constraint on jets measurements.

Higgs branching ratio

$\mathcal{O}(10\%)$	$\mathcal{O}(1\%)$	$\mathcal{O}(0.1\%)$	O(0.01%)
	gg (8.6%) $\tau^+\tau^- (6.3\%)$	$\gamma\gamma$ (0.23%)	$\mu^+\mu^-$ (0.02%)
$b\bar{b}$ (58%)	$c\bar{c}$ (2.9%)		$s\bar{s}$ (0.02%)
W^+W^- (21%)	ZZ (2.6%)	$Z\gamma$ (0.15%)	

Goal is to measure these BR at the percent or sub-percent level. This requires very good jet flavor-id (b, c, gluon) and good di-jet mass resolution (W-Z id).

A Chuck Norris challenge

Ability to distinguish gluon jets from light quark jets would open access to $BR(H \rightarrow s\bar{s})$.

b, c and gluon tagging

- \bullet needed to access the H $\rightarrow b\bar{b},\ c\bar{c}$ and gg branching fraction.
- needs good vertex detector.
- ILC design goal on impact parameter resolution:

$$5\mu \mathrm{m} \oplus \frac{10\mu \mathrm{m}}{p(GeV) \mathrm{sin}^{\frac{3}{2}} \theta}$$

WW and $ZZ\ {\rm Branching}\ {\rm Ratio}$

• Br(H \rightarrow ZZ)=0.1 Br(H \rightarrow WW). %-level precision:

needs good di-jets mass resolution. so needs good jet energy resolution.

• ILC design goal:

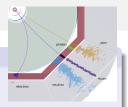
 $\begin{array}{l} \hline 3 \text{ to } 4 \ \% \text{ resolution on jet energy above } \sim 50 \ \text{GeV} \\ \hline \frac{\Delta E_{jet}}{E_{jet}} \sim \frac{30\%}{\sqrt{E(\text{GeV})}} \end{array}$

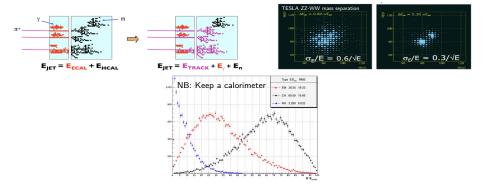
Does the higher FCC-luminosity allow to reduce jet energy resolution and not distinguish Z and W di-jets ?

Let's assume, W and Z are not hadronically separated.

 $BR(H \rightarrow WW)$ $BR(H \rightarrow ZZ)$ • $ee \rightarrow 7H$ • $ee \rightarrow 7H$ Z $\rightarrow f\bar{f}$ with $f = e, \mu, q$: BR=0.766 H $\rightarrow WW^*$: BR=0.215 Z $\rightarrow l\bar{l}$ with $l = e, \mu$: BR=0.066 H $\rightarrow ZZ^*$: BR=0.026 * W $\rightarrow l\nu$ with $l = e, \mu$: BR=0.20 * $Z \rightarrow l\bar{l}$ with $l = e, \mu$: BR=0.066 \star W^{*} $\rightarrow a\bar{a}'$: BR=0.67 * $Z^* \rightarrow f\bar{f}$ with $f = e, \mu, q$: BR=0.766 • $10^6 \text{ H} \Rightarrow \sim 22000 \text{ events}$ • $10^6 \text{ H} \Rightarrow \sim 90 \text{ events}$ $\Rightarrow \sigma_{stat} < 1\%$. $\Rightarrow \sigma_{stat} \sim 11\%$. Allowing the first Z to decay in guarks: • $10^6 \text{ H} \Rightarrow \sim 1000 \text{ events}$ $\Rightarrow \sigma_{stat} \sim 3\%$.

- Extract Higgs total width by combining $\sigma(HZ)$ and BR(H \rightarrow ZZ) measurements.


$ee \rightarrow ZH \rightarrow ZVV$ full hadronic


- Reconstruct Z in ee, $\mu\mu$ or $q\bar{q}$ and H in 4 jets.
- 10^6 ZH events yield ~ 74000 H \rightarrow WW and 9800 H \rightarrow ZZ.
- A 1% contamination of ZZ by WW implies less than 98/74000=1.3 $\times 10^{-3}$ fraction of W events reaching the Z mass.
- $\sigma = \frac{m_Z m_W}{3} = 3.45 GeV \Rightarrow \frac{3.45}{m_W} \sim 4.2\%$ mass resolution on hadronic vector bosons.
- In fact, slightly better is needed to take into account both Z and W mass peak width.

Reaching jet energy resolution

Particle Flow Algorithm (PFA)

- $\bullet~$ ILC/FCC physics program requires W/Z $\rightarrow q\bar{q}$ mass separation.
- \Rightarrow jets resolution [50, 500] GeV better than $\sim 3 4$ % $\sim 30\%/\sqrt{E}$.
- Use optimal sub-detector for jet energy estimation :
 - tracker (~ 60%), ECAL (~ 30%), HCAL (~ 10%).
- Separate energy depositions from close-by particles.

The WW fusion

WW fusion

- Cross section increases with \sqrt{s} • More relevant at $\sqrt{s} = 365$ GeV. • surpasses $ee \rightarrow ZH$ at $\sqrt{s} \sim 500$ GeV.
- Helps measuring HWW coupling.
- Higgs total width by combining σ (WW fusion) and BR(H \rightarrow WW) measurements, independent of HZZ coupling.
- Can test HWW coupling CP properties.

Higgs CP measurements

- in Yukawa coupling: best done from $H \rightarrow \tau \tau$ decay with ee \rightarrow ZH at 250 GeV.
- in HZZ coupling: best done with ee \rightarrow ZH at 250 GeV.
- in HWW coupling: best done with WW fusion at higher energies.

None of the above brings new constraints on jets measurements.

Summary

- Jets are a key tool to measure Higgs Branching Fraction with precision at the percent level.
 - Wanted: hadronic W-Z separation.
 - ★ Energy resolution below 3-4%.
 - * Particle Flow Approach.
 - * High granularity calorimeters.
 - Going from 4D (hit position+energy information) to 5D (add timing) calorimeters in CALICE (SDHCAL) and CMS HGCAL. (See V. Boudry's talk).
 - Wanted: excellent jet flavour tagging.
 - * Precise vertex reconstruction.
- ZZ Branching fraction is a key input to measure the Higgs width.