Higgs boson self-coupling measurements and extended Higgs boson sector

Roberto Salerno LLR - CNRS/IN2P3

Why λ_{HHH} is so important?

The shape of the scalar potential is linked to many open questions of particle physics and cosm $m_h = 124 \text{ GeV}$ $m_h = 126 \text{ GeV}$

The modification of the scalar potential at high scales makes the EW vacuum metastable the inflaton in the primordial Universe

-> The stability of the potential at high mass has an impact of the possible role of the Higgs boson as

Significance of HH production				
	Statistical-only		Statistical + Systen	
	ATLAS	CMS	ATLAS	CMS
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95
$HH \to b \bar{b} \tau \tau$	2.5	1.6	2.1	1.4
$HH ightarrow b \overline{b} \gamma \gamma$	2.1	1.8	2.0	1.8
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56
$HH \rightarrow b\bar{b}ZZ(4l)$	-	0.37	-	0.37
combined	3.5	2.8	3.0	2.6
	Combined		Combined	
	4.5	5		4.0

 \rightarrow Constraint on the Higgs self-coupling of 0.5 < k_{λ} < 1.5 at the 68% CL (e.g. 50% precision) -> The secondary minimum in the likelihood lineshape (due the degeneracy in the total number of HH signal events) excluded at 99.4%CL

Roberto Salerno

λ ннн @ FCC-ее

Higher-order corrections to single-Higgs processes

 λ_{HHH} does not enter single-Higgs processes at LO but it affects both Higgs production and decay at NLO.

λ_{HHH} effect

$\% \sigma(HZ)$ measurement implies a few 10% constraint !

The 2 ways to perform λ_{HHH} measurement below the double Higgs boson production threshold

1. an exclusive analysis of single Higgs processes at higher order, considering <u>only</u> <u>deformation</u> of the Higgs cubic coupling \rightarrow a one-dimensional EFT fit

2. a global analysis of single Higgs processes at higher order, considering also <u>all possible</u> <u>deformations</u> of the single Higgs couplings \rightarrow a multi-parameter EFT fit

Robust bounds can be obtained

In the SMEFT_{EWP0} mostly used in the following, the perfect EW constraints(*) are assumed and 12+1 parameters are fitted: - (6) corrections to the Higgs boson couplings to the gauge bosons - (5) corrections to the Yukawa couplings - (1) correction to trilinear gauge couplings

(*) any new physics contributions to the EW precision observables are bounded to be exactly zero, after running at FCC-ee(Z), this assumption is *almost* verified

- (1) correction to the trilinear Higgs boson self-coupling

The optimal set of variables

- The ZH Higgsstrahlung rate
- → The VBF rate
- The full angular distributions

3 angles and 2 masses fully characterise $ee \rightarrow ZH \rightarrow Hff$

 \rightarrow The decay modes: ZZ,WW, $\gamma\gamma$, $Z\gamma$, $\tau\tau$, bb, gg, cc, $\mu\mu$

 $H \rightarrow Z\gamma$ decay, not very constraining for the SM hZy coupling, but resolve the degeneracies of EFT parameters in the production processes

Weak boson rate and distributions

Not all of them used yet in all the projections

			HL-LHC +	
Kappa-0	FCCee	FCCee	FCCee	FCCee
scenario	240	240+365	240	240+365
$\kappa_W ~[\%]$	1.3	0.43	0.86	0.38
<i>к</i> _Z [%]	0.20	0.17	0.15	0.14
к g [%]	1.7	1.0	1.1	0.88
$\kappa_{\gamma} [\%]$	4.7	3.9	1.3	1.2
$\kappa_{Z\gamma}$ [%]	81*	75 *	10.	10.
$\kappa_{c} [\%]$	1.8	1.3	1.5	1.3
κ _t [%]	—	—	3.1	3.1
<i>к</i> _b [%]	1.3	0.67	0.94	0.59
κ _μ [%]	10	8.9	4.	3.9
$\kappa_{ au}$ [%]	1.4	0.73	0.9	0.61

Scenario	BR _{inv}	BR _{unt}
kappa-0	fixed at 0	fixed at 0
kappa-1 kappa-2	measured measured	fixed at 0 measured
kappa-3	measured	measured

7

Disentangle a variation due to a modified Higgs boson self-coupling from variations due to another deformation of the SM

Having two energy points : reduce the uncertainty on all the EFT parameters

Roberto Salerno

Main results

	collider	(1) di-H excl.	(2.a) di-H glob.	(3) single-H excl.		(4)
				with HL-LHC	w/o HL-LHC	
_	HL-LHC	$^{+60}_{50}\%$ (50%)	52%	47%	125%	
	HE-LHC	10-20% (n.a.)	n.a.	40%	90%	
	ILC_{250}	_	_	29%	126%	
	ILC ₃₅₀	_	_	28%	37%	
	ILC ₅₀₀	27% (27%)	27%	27%	32%	
	ILC ₁₀₀₀	10% (n.a.)	10%	25%	n.a.	
	CLIC ₃₈₀	_	_	46%	120%	
	CLIC ₁₅₀₀	36% (36%)	36%	41%	80%	
	CLIC ₃₀₀₀	$^{+11}_{-7}\%$ (n.a.)	n.a.	35%	65%	
	FCC-ee ₂₄₀		_	19%	21%	
	FCC-ee ₃₆₅	_	_	19%	21%	
	FCC-ee ^{4IP} ₃₆₅	—	—	14%	n.a.	
	FCC-eh	17-24% (n.a.)	n.a.	n.a.	n.a.	
	FCC-ee/eh/hh	5% (5%)	6%	18%	19%	
	LE-FCC	15% (n.a)	n.a	n.a.	n.a.	
	CEPC	_	 – 	17%	n.a.	

Statistics are of essence for this measurement, as for all other Higgs boson measurements

Simplified combination with HL-LHC

Evolution with integrated luminosities

Exclusive analysis

Roberto Salerno

LLR / FCC-France Workshop 14-15 May 2020

 \rightarrow a loss of 15% luminosity per IP when going from 2IP to 4IP → 3 years saved from the shorter Z pole and WW threshold runs

10

SMEFT fit

Results in the more general benchmark SMEFT_{ND} ND = Neutral Diagonality, relaxed assumptions on 3rd gen. quarks and on leptons

13 independent coefficients

 $\{\delta m, c_{gg}, \delta c_z, c_{\gamma\gamma}, c_{z\gamma}, c_{zz}, c_{z\Box}, \delta y_t, \delta y_c, \delta y_b, \delta y_{\tau}, \delta y_{\mu}, \lambda_z\}$

LLR / FCC-France Workshop 14-15 May 2020

10²

Probing the Electroweak Phase Transition

Minimal extension of the Standard Model with a real, scalar singlet field S

Due to the the Higgs-singlet mixing → HZZ coupling is suppressed compared to the SM prediction $\rightarrow \lambda_{\text{HHH}}$ coupling deviates from the SM

prediction

Deviations for various models

Deviations within the sensitivity reach of FCC cross-correlation between direct discovery (either S \rightarrow HH or H \rightarrow SS) and the Higgs property measurements

Higgs boson exotic decays

Exotic Higgs Boson decay into hidden sector steps which subsequently decay back into SM states

C-2019-0003
1

Conclusions

- \rightarrow The Higgs boson self-coupling (λ_{HHH}) is at the root of EW symmetry breaking no need to reach double Higgs production threshold to have access to it!
- → The FCCee/hh performance is superior
- \rightarrow At FCCee we could go down to 33%(24%) precision on λ_{HHH} with 2IP(4IP)

statistic and different energies are the keys \rightarrow Room to improve/refine the analyses $\rightarrow \sqrt{s}$ optimisation at FCC-ee better measurement of the rates → angular variables

- models (towards discovery?)
- \rightarrow The way forward: design the detector, full simulation, ...

-> Statistic is as well the key to reduce the allow phase space for BSM Higgs boson

