DE LA RECHERCHE À L'INDUSTRIE

W mass & width

measurement

www.cea.fr

DRf/IRfU/DPhP

14.05.20

The W mass as a test of the self-consistency of the Standard Model C22

L

 $M_W^2 = \frac{\pi \, \alpha_{QI}}{\sqrt{2} \, G_H}$

-

$$\sum_{\substack{ED(M_Z^2)\\F}\sin^2\theta_W} \frac{1}{1-\Delta r} \qquad \qquad \Delta r = -\frac{\cos^2\theta_W}{\sin^2\theta_W}\Delta\rho + \frac{\alpha}{3\pi} \left[\frac{1}{2} - \frac{1}{3}\frac{\sin^2\theta_W}{1-\tan^2\theta_W}\right]\log\frac{m_H^2}{m_Z^2} + \dots \sim 1\%$$

$$\Delta \rho = \frac{\alpha m_t^2}{\pi m_Z^2} - \frac{\alpha}{4\pi}\log\frac{m_H^2}{m_Z^2} + \dots \sim 1\%.$$

After the discovery of the Higgs boson at the LHC, all SM parameters are known and the global fit of electroweak observables is overconstrained

v

Predicted mass: 80.358 ± 4 MeV

Measured mass: 80.379 ± 12 MeV

With M_{W} (& other e.w. observables) precisely measured, the global fit will provide a stringent consistency test of the SM, which failure might reveal new physics

Mass measurement methods

From the W-pair production cross-section near its kinematic threshold

Involves selecting & counting events Clean, uses all decay channels

 $\sqrt{S} = 160 \text{ GeV}, L = 12 \text{ ab}^{-1} \longrightarrow 60.10^{6} \text{ WW}$

https://arxiv.org/pdf/1703.01626.pdf

From the full reconstruction of the WW decays

$$m_{inv} = \sqrt{(E_1 + E_2)^2 - (P_1 + P_2)^2}$$

Uses fully hadronic & semi-leptonic channels Uses kinematic reconstruction techniques $\sqrt{S} = 160 \text{ GeV}, \text{L} = 12 \text{ ab}^{-1}$ \longrightarrow 60. 10⁶ WW $\sqrt{S} = 240 \text{ GeV}, \text{L} = 5 \text{ ab}^{-1}$ \longrightarrow 80. 10⁶ WW $\sqrt{S} = 350-365 \text{ GeV}, \text{L} = 1.7 \text{ ab}^{-1}$ \longrightarrow 20. 10⁶ WW

http://www.theses.fr/2019SACLS393

$$M_{W,stat} = \left(\frac{d\sigma}{dM_W}\right)^{-1} \frac{\sqrt{\sigma}}{\sqrt{\mathcal{L}}} \frac{1}{\sqrt{\epsilon p}}$$

with $p = \frac{\epsilon \sigma}{\epsilon \sigma + \sigma_B}$

1

$$\Delta M_{W,stat} = \left(\frac{d\sigma}{dM_W}\right)^{-1} \frac{\sqrt{\sigma}}{\sqrt{\mathcal{L}}} \frac{1}{\sqrt{\epsilon p}}$$

$$\Delta MW_{,sys} = \left(\frac{d\sigma}{dM_W}\right)^{-1} \frac{\Delta \sigma_B}{\epsilon} \qquad background$$

$$\oplus \left(\frac{d\sigma}{dM_W}\right)^{-1} \sigma \left(\frac{\Delta \epsilon}{\epsilon} \oplus \frac{\Delta \mathcal{L}}{\mathcal{L}}\right) \qquad \text{efficiency} \\ \text{luminosity}$$

$$\oplus \left(\frac{d\sigma}{dM_W}\right)^{-1} \Delta \sigma \qquad WW \ \text{cross-section}$$

$$\oplus \left(\frac{d\sigma}{dM_W}\right)^{-1} \left(\frac{d\sigma}{dE_{CM}}\right) \ \Delta E_{CM} \quad \text{c.o.m. energy}$$

 $\Delta M_{\rm W} = 0.23 \, {\rm MeV}$

$$\Delta M_{W,stat} = \left(\frac{d\sigma}{dM_W}\right)^{-1} \frac{\sqrt{\sigma}}{\sqrt{\mathcal{L}}} \frac{1}{\sqrt{\epsilon p}}$$

$$\Delta M_{W,sys} = \left(\frac{d\sigma}{dM_W}\right)^{-1} \frac{\Delta \sigma_B}{\epsilon}$$

$$\oplus \left(\frac{d\sigma}{dM_W}\right)^{-1} \sigma \left(\frac{\Delta \epsilon}{\epsilon} \oplus \frac{\Delta \mathcal{L}}{\mathcal{L}}\right)$$

$$\oplus \left(\frac{d\sigma}{dM_W}\right)^{-1} \Delta \sigma$$

$$\oplus \left(\frac{d\sigma}{dM_W}\right)^{-1} \left(\frac{d\sigma}{dE_{CM}}\right) \Delta E_{CM}$$

Systematics to be kept below: $\Delta \sigma_{\rm B} < 0.6 \, fb \quad (2. \, 10^{-3})$ $\left(\frac{\Delta \epsilon}{\epsilon} \oplus \frac{\Delta \mathcal{L}}{\mathcal{L}} \right) < 2.10^{-4}$ $\Delta \sigma_{\rm theory} < 0.8 \, fb \quad (2. \, 10^{-4})$ $\Delta E_{\rm CM} < 0.2 \, \text{MeV} \quad (2. \, 10^{-6})$

m_w=80.385 GeV Γ_w=2.085 GeV

m_w=80.385 GeV

with resonant depolarisation: $E_b = 0.4406486 (v + 0.5) \text{ MeV}$ then $E_1 = 157.3 \text{ GeV}$, $E_2 = 162.6 \text{ GeV}$, f = 0.4 $\Delta M_W = 0.45 \text{ MeV}$, $\Delta \Gamma_W = 1.3 \text{ MeV}$

The energy spread will be measured with a relative precision better than 0.2%, using

 $e^+ e^- \rightarrow \mu^+ \mu^-$ events copiously produced at all energies

negligible contribution to ΔM_W & $\Delta \Gamma_W$

W mass & width from the full reconstruction of WW hadronic decays

@ 162.6 GeV, 240 GeV, 365 GeV

0 PYTHIA v8.24 simulation

Cea

- Reconstruction with HEPPY (CLD detector, DURHAM algorithm)
- Jets paired by minimising the difference with m_{PDG}

W mass estimators:

- \circ Raw mass
- 4C jets momenta rescaling
- Kinematic fit

Cez W mass & width from the full reconstruction of WW hadronic decays

Statistical uncertainty estimated with a **binned maximum likelihood fit** on the reconstructed M_W distributions, using **templates** with different nominal W mass (width) values.

(a) 162.6 GeV $\Delta \Gamma_{W} (4C) = 1.1 \text{ MeV}$ (a) 240 GeV $\Delta \Gamma_{W} (5C) = 0.47 \text{ MeV}$ (a) 365 GeV $\Delta \Gamma_{W} (5C) = 1 \text{ MeV}$ Mass & width uncertainties evaluated independently

```
Full FCC-ee luminosity
```

CEZ W mass & width from the full reconstruction of WW semi-leptonic decays

@ 162.6 GeV, 240 GeV, 365 GeV Only leptonic muon decay

14.05.20

W mass & width statistical uncertainties

Hadronic decays

	$\Delta M_W [MeV/c^2]$			$\Delta\Gamma_{_{ m W}}$ [MeV/ c^2]			
\sqrt{S} [GeV]	162.6	240	365	162.6	240	365	
L [ab ⁻¹]	12	5	1.7	12	5	1.7	
Raw mass	1.66	0.49	0.97	1.44	1.10	1.71	
4C rescaling	1.72	0.36	0.73	1.53	0.77	1.48	
4C fit	1.13	0.28	0.5	1.1	0.58	0.95	
5C fit		0.21	0.44		0.47	1.0	

Semi-leptonic decays

	$\Delta M_{ m W} [{ m MeV}/c^2]$			$\Delta\Gamma_{ m W}$ [MeV/c²]			
\sqrt{S} [GeV]	162.6	240	365	162.6	240	365	
L [ab ⁻¹]	12	5	1.7	1.44	1.10	1.7	
Raw mass	0.42	0.49	1.19	0.39	0.87	1.94	
1C fit	0.26	0.33	0.78	0.35	0.59	1.36	
2C fit		0.31	0.75		0.68	1.56	
	0.22						
from $\sigma_{_{WW}}$	0.4			1.2			
						1 • •	

Full FCC-ee luminosity

 \sqrt{S} [GeV]

SK1

SKII

BEC

 $\delta M_{\rm FS1}$ [MeV]

Main sources of systematic uncertainties @LEP2: arXiv:hep-ex/0612034

Source	Systematic Uncertainty in MeV				
	on $m_{\rm W}$			on $\Gamma_{\rm W}$	
	$q\overline{q}\ell\nu_{\ell}$	$q\overline{q}q\overline{q}$	Combined		
ISR/FSR	8	5	7	6	
Hadronisation	13	19	14	40	
Detector effects	10	8	9	23	
LEP energy	9	9	9	5	
Colour reconnection	-	35	8	27	
Bose-Einstein Correlations	-	7	2	3	
Other	3	10	3	12	
Total systematic	21	44	22	55	
Statistical	30	40	25	63	
Statistical in absence of systematics	30	31	22	48	
Total	36	59	34	83	

162.6

cone

7.5

3.8

1.8

standard

14.6

7.9

3.1

 δM_{FSI} minimized by rejecting soft particles outside a cone (0.4 rad) at the level of jet clustering

FSI simulated with PYTHIA: CR (SKI / SK2) & BEC

 $\Delta M_{W, stat}$ is degraded with the cone by a few % @ threshold and 10-15% above, but compensated by a reduction of the systematic shift (~50%) 14.05.20 Workshop FCC-France / Elizabeth Locci

23.9

12.1

5.9

The amount of W pairs @ planned FCC-ee energies presents a huge potential for many precision measurements: W mass & width, but also: aTGCs, BRs, α_s , CKM matrix....

- $M_{W} \& \Gamma_{W} \text{ can be accurately derived. from } \sigma_{WW} \text{ measurement } @ \text{ threshold:} \\ \Delta M_{W} = 230 \text{ keV} @ 161.4 \text{ GeV} (\Delta M_{W} = 450 \text{ keV}, \Delta \Gamma_{W} = 1.3 \text{ MeV} @ 157.3 \text{ GeV} \& 162.6 \text{ GeV})$
- $M_W \& \Gamma_W \text{ measurements from WW decays reconstruction is statistically competitive:} \\ \Delta M_W = 210 \text{ keV} @ 240 \text{ GeV} \text{ in the hadronic channel} \\ \Delta M_W = 260 \text{ keV} @ 162.6 \text{ GeV} \text{ in the semi-leptonic channel}$
- **Centre-of-mass energy precisely measured** from accurate M_W measurement above WW threshold where the resonant depolarisation cannot be used (2 MeV @ 365 GeV).
- **The systematic mass shift induced by FSI can be reduced** by using a cone in jet clustering (study to be refined?). Measure of FSI from W mass shift is possible.
- A very preliminary study shows that the expected **background level is not an issue**.

Still some work to be done on systematic aspects and their consequences on detector requirements:

- o momentum & angular resolution, scale stability (also Z, H)
- o **lepton identification** (also for Z, τ decays)
- o **angular acceptance definition & precision** (also Z)

Not an exhaustive list, many other studies common to W, H, t, heavy flavours

Lots of nice physics studies @ WW threshold & above !