

Status of FCC Software

1st Workshop FCC France

May 14, 2020 <u>G Ganis</u>, C Helsens CERN-EP

FCC Software (FCCSW) today

FEC Hh ee he

- FCCSW is still largely what was used for the CDR
- Good modular structure based on Gaudi (LHCb, ATLAS)
 - Base for Key4hep
- Provide support for all the required functionality
 - Event Data Model (EDM), Generators, Detector geometry, Fast/Full simulation, Reconstruction, ...
- Current main limitations are in the implemented functionality
 - Available generators, in particular for FCC-ee
 - Palette of detector concepts with parametrized description
 - Quality of the description
 - Palette of detectors with detailed geometry description
 - Digitisation of their signal
 - Reconstruction algorithms

FCC Software tomorrow

(FCC) hh ee he

Common software for future experiments

- Bologna workshop, June 2019
 - Present: LHC, ILC, CLIC, FCC, CEPC, SCTF, HSF
 - Agreed to investigate the possibility to have a common event data model (EDM4hep) and contribute to the development of a Common Turnkey Software Stack (Key4hep)
 - One framework (Gaudi best candidate), DD4hep, EDM4hep, Geant4, ROOT, ...
- Follow-up in <u>Hong Kong</u>, 17 January 2020
 - Present: ILC, CLIC, FCC, CEPC
 - Agreed to set-up <u>regular weekly meetings</u>, a <u>GitHub repository</u>, <u>documentation</u>, deployment area on CVMFS, ...
 - Get quickly first version of EDM4hep and Key4hep available

Today status: {EDM4hep v0.1, Key4hep v0.1} available since april 2020; ready to start testing

Mandate for the after-CDR FCC software

- Support for more detailed studies, in particular for e+e-, focusing on
 - Completeness
 - State-of-Art generators, MDI support, reconstruction / analysis algorithms, ...
 - Flexible detector description
 - Easy switch/ replace sub-detectors, change dimensions / layout, ...
 - Easy-of-use
 - Low usability thresholds and fast / easy learning curve
 - Adequate computing support and CPU / storage resources
 - Extensive documentation and regular training
- Ensure that SW is part-and-parcels of the Turnkey Software Stack
- Foster development and use in
 - Physics studies, Detector optimization, Machine-Detector Interface
- Foster / support substantial participation for FCC institutes worldwide

Experimental challenges for FCC-ee (on software)

- Ref: <u>A Blondel</u> @ FCC Physics on March 30th and <u>case studies</u>
- Requirements on detector understanding O(1-2) better than LEP
 - Need to simulate a lot of (reliable) data
- Priority is to have as soon as possible
 - Flexible **full** simulation and reconstruction for case and detector design studies
 - b-tagging, reconstruction and vertex geometry, tracking, PID etc.
 - Flexible **fast** simulation to support case studies
 - And also generator-level studies, or brain activity
- Independent of Snowmass
 - But Snowmass may be instrumental to foster activities and provide synergies
- Possible computing efficiency issue (in particular @ Z)
 - Interplay fast / full simulation may be required to mitigate

What can we do for FCC-ee with what we have today?

Status of FCC Software, FCC France, May 2020

Monte Carlo Generators and FCCSW

- Generators repository: GenSer @ LCG software stacks
 - <u>Gen</u>erator <u>Ser</u>vice hosted by EP-SFT @ CERN

Collaboration with the authors and with the LHC experiments to prepare validated code for communities at the LHC

- Actively used by ATLAS, LHCb, SWAN and some SME experiments
- Deployed via CernVM-FS
- MC generators are typically <u>standalone codes</u>
 - Noticeable exception is Pythia8, which provides a callable interface
- FCCSW interoperates MC generators mostly through <u>common data formats</u>
 - HepMC, LHEF
- Pythia8 used to read HepMC, LHEF files

MC Generators: status and areas of work

- GenSer generators palette biased towards LHC
 - Good for FCC-hh, incomplete for FCC-ee
- General purpose generators such as Pythia8, Whizard, MadGraph5 available
 - But we need to get experience on how to use them effectively for FCC-ee
- Old LEP generators (KKMC, BHLUMI, MCSANC, BabaYaga, ...)
 - Not available yet, but (often) still State-Of-Art
 - Wrappers to produce HepMC and/or LHEF output required

Contributions welcome/required on interfacing and testing Experience needed for interfacing: FORTRAN, FORTRAN&C++ interplay For testing: ability/willingness to understand settings of a given generator

Simulation

- Delphes (parametrized)
 - Gaudi interface
 - FCC EDM output
- Geant4 (fast / full)
 - Gaudi components exists to create
 - User Actions
 - Regions
 - Sensitive detectors
 - Selective output options
 - Mixing fast and full G4 simulation possible
 - SimG4Full / SimG4Fast

FCC detector concept palette for Delphes

- Validated and used for CDR
 - FCC-hh baseline, HL-HELHC baseline
- IDEA, CLICDet and others available for FCC-ee
 - Not extensively used, need validation
- Latest version of Delphes includes TrackCovariance, dEdx, ParticleDensity
 - Enable simulation vertexing, b-tagging, ...
 - Help developing/understanding algorithms

Possible contributions: testing, validation, fine tuning of existing cards; scripts or tool to easy variate relevant dimensions

Experience needed: familiarity with Delphes, Gaudi, simulation

FCC detector palette in DD4hep: FCC-hh

FCC-hh CDR baseline

- Barrel, Endcap, Forward
- Beam Pipe, Shielding, Magnet solenoid
- Silicon Tracker
- LAr ECal, Tile HCal
- Muon System

Solenoid Shielding

Luminosity Calorimeter

Vertex Detector

Drift Chamber

Tungsten Shielding

Beam Pipe

Beam Pipe, Beam instrumentation

- CLD Lumical, HOM Absorber
 - Vertex detector
 - Drift Chamber

FCC-ee IDEA

- Dual Readout Calorimeter
- Muon System

DR calo full simulation available in "standalone". Integration in FCCSW/Key4hep requires:

FCC detector palette in DD4hep: FCC-ee

- Translation of geometry in DD4hep format
 - Requires support for optical properties, available in DD4hep since 11/2019
- Integration of digitisation

FCC detector palette in DD4hep: FCC-ee

Possible alternatives for FCC-ee

- "IDEA" tracker with reduced version of LAr ECal + Tile HCal
 - First DD4hep description available for testing
- CLD
- Geometry description in DD4hep exists: <u>https://github.com/iLCSoft/lcgeo</u>
- Requires integration in FCCSW (digitisation modules exists in iLCSoft)

Contributions welcome/required on:

- IDEA: cross-check/complete existing stuff or provide (DR calo, muon) DD4hep descriptions and digitization

- Enabling of CLD in FCCSW: digitisation, ...

Experience needed: familiarity/willingness to learn: DD4hep, detector geometry, Geant4

Reconstruction

- Challenges: algorithm <u>detector concept independent</u>
 - Full flexibility, avoid duplication
- Tracking
 - Track seeding (Silicon tracker, FCC-hh), Hough Transform (drift chambers, FCC-ee)
 - Under development / investigation: ACTS integration, Conformal tracking
- Calorimeters
 - Sliding window (rectangular/ellipse), Topo-clustering
 - Under development / investigation: ML techniques

Possible contributions: tracking, vertexing, ACTS, ML, particle ID Experience needed: familiarity with reconstruction algorithms, Gaudi, C++

What can we do for FCC-ee in Full Simulation?

- Tracking for IDEA
 - Basic digitisation producing space points
 - No integrated reconstruction algorithm available
 - Proof-of-concept of Hough Transform algorithm available as standalone script
- LAr calorimetry
 - Description + digitization available
 - Exercise in tutorials
 - Not yet calibrated

Considerations for Physics Analyses

- <u>HEPPY:</u> High Energy Physics with PYthon
 - Modular python framework for the analysis of collision events
 - Developed and still used for CMS
- In FCCSW HEPPY is used to
 - Process EDM events, apply-preselection, produce a flat and light ROOT ntuple
 - Analyse the ROOT ntuple
 - Not the only code used for this purpose
- Flexible but slow
 - O(100) evts/s

Considerations for Physics Analyses: RDF

- Work ongoing on a ROOT RDataFrame-based framework
- Improve efficiency going directly from EDM to final plots
 - Framework based on 4 modules to be defined by users
 - See example repository on GitHub
- Foster use of common tools
 - Web-based event shared database
 - Enables sharing of analysis modules
- Can process up to 15k evts/s w/o special optimization

Possible contributions: consolidate existing replacement prototype based on RDataFrame Experience needed: familiarity with ROOT and RDataFrame; advanced Python

Areas of work summary

- MC generators
 - Interfacing, testing
- MDI
 - Shared formats
 - GuineaPig++ integration
 - Overlay of MDI/signal events
- Detector concepts
 - IDEA DR Calo full simulation
 - IDEA Muon system full sim
 - \circ ~ Validation of LAr Ecal for FCC-ee
 - Enabling of CLD in FCCSW/k4h
- Validation/testing of Delphes cards

Reconstruction

- Tracking algorithms
- Vertex reconstruction
- ACTS integration
- $\circ \quad \text{ML for calo reconstruction} \\$
- Identification
 - \circ e, mu, tau, c, b tagging / ID
- Analysis tools
 - RDataFrame based analysis
- AoB
 - Porting to other OSs
 - o ...

FCC-France interest

- About 20 potential users
 - Very few developers (~10%), but, likely, with experience
- Main interest in (charged) Higgs and flavour-physics
- Start working with Delphes, while waiting for full simulation
- Mostly interested in
 - Calorimeters and vertex detectors
 - Calo objects and PF algorithms, vertexing b-tag and tau reco
 - Performance of ML, reconstruction
- Most urgent/important for software:
 - Flexibility, support full simulation, full palette of generators

Summary

- Software is essential during this phase of the project
 - No CDR+/TDR without a robust software
 - Should be carefully designed for long term usage
 - The current software stack, assembled using as much as possible existing components, served well the purposes of the CDRs
- New phase very challenging
 - Unprecedented level of precision expected at FCC-ee
 - Potentially orders of magnitude more Monte-Carlo than LHC
- Try to get as much as possible from the community
 - Following closely, participate-to, collaborate-w/ common activities {Key4hep, EDM4hep}
- Everyone should feel concerned
 - Immediate areas of work identified

Thank you!

Web site <u>https://cern.ch/fccsw</u>

Backup

Status of FCC Software, FCC France, May 2020

Key4hep/EDM4hep and Delphes

- EDM4hep v0.1 available
 - Should be OK for FCC-ee
- Key4hep v0.1 includes K4FWCore steering component
 - Equivalent, and derived from, to FWCore in FCCSW
- Prioritization of the DelphesInterface module addition under discussion
 - Derived from FCCSW SimDelphesInterface
- Ideally this could be used for Snowmass Delphes studies

Available components

Status of FCC Software, FCC France, May 2020

Typical workflows

Connection with Key4HEP

Event Data Model

• <u>Current</u> FCC-EDM

Ο

- MC truth: MCParticle, GenVertex, GenJet
 - Tracker: Track (PositionedTrackHit, TrackCluster, TrackState)
- Calorimeter: CaloCluster (PositionedCaloHit)
- Associations: ParticleMCParticleAssociation, DigiTrackHitAssociation, CaloHitAssociation, CaloHitMCParticleAssociation
- High-Level objects: TaggedParticle, Vertex (WeightedTrack), TaggedJet, ResolvedJet, MET
- Tuned on the needs of FCC-hh
 - High-level objects of LHC inspiration
- TaggedParticle contains cross association between tracks and calo objects

Detector Description: DD4hep

- Generic detector view appropriate to support
 - Simulation, reconstruction, analysis, ...
- <u>Design goals</u>
 - Complete detector description
 - Single source of information
 - Support all stages of the experiment
 - Easy of use
- Part of AIDA2020

• Used by CLIC, ILC, FCC, LHCb, CMS, SCT

Software Framework: Gaudi-based

- Framework toolkit to provide required interfaces and services to build HEP experiment frameworks
 - Opensource project and experiment independent
- Data processing framework designed to manage experiment workflows
 - Separate data and algorithms; well defined interfaces
 - User's code encapsulated in Algorithm's, Tool's / Interface's, Service's
 - Different persistent and transient views of data
 - C++, with Python configuration
- Originating from LHCb, Gaudi is adopted also by ATLAS
 - Actively developed to face LHC Run 3 and Run 4 challenges (high PU)
- Using the latest Gaudi version (v32r2).

Gaudi and FCCSW

Status of FCC Software, FCC France, May 2020

Gaudi and FCCSW

• Python scripts to configure tools and algorithms and define their processing order

\$ fccrun \
 ./Examples/options/geant_fullsim_fccee_pgun.py \
 .-energyMin=10 --energyMax=10 --particleName="mu-" \
 # job (
 # job (

- # Generic Gaudi app# job definition# parameters
- Each algorithm defines its parameters which can be overwritten of the command line

Fast / Full Simulation Interplay

(FEC hh ee he

MDI integration: status and areas of work

- Agreement to define shared documented data formats
 - Work not started yet
- GuineaPig++ interfaced to iLCSoft
 - May be used as source of inspiration
- Event overlay in FCCSW
 - Same technology used for pileUP
 - \circ ~ Need to be tested and validated

Contributions required to all the above items Experience required: file formats, FORTRAN, C++

Software Infrastructure

- <u>Typical</u> HEP development <u>workflow</u>
- Deliverables
 - FCCSW
 - Externals: FCCSW specific dependencies
 - Based on LCG releases provided by EP-SFT

FCCSW - Main package

FCC externals fcc-edm fcc-physics tricktrack heppy podio ...

LCG release Gaudi dd4hep ROOT ...

- Builds (nightlies, releases) managed by Spack package manager
 - Good feedback to HSF packaging WG
- Deployment on dedicated CernVM-FS repositories
 - /cvmfs/fcc.cern.ch/, /cvmfs/fcc-nightlies.cern.ch/

CERN resources and access policy

- CERN resources are available to member of institutes having signed the
 <u>Memorandum of Understanding and its addendum</u>
- EOS areas for data or large files: /eos/experiment/fcc
 - Current quota: 400 TB
 - E-group membership: fcc-eos-access (and alike)
 - Dedicated areas for ee, hh, eh, helhc, users
 - Plan to deprecate 'users': each CERN user has 1 TB at /eos/user/u/username
 - Needs to be enabled on Account Management page
- EOS areas for shared files: /eos/project/f/fccsw-web/www
 - Also accessible also via web
- Dedicated queue on LXBATCH
 - AccountingGroup = "group_u_FCC.local_gen" (on HTCondor)
 - E-group membership: fcc-experiments-comp