Global concepts for an FCC-ee detector: IDEA and CLD

F. Grancagnolo INFN – Lecce

Workshop FCC-France LPNHE-Paris, May 14-15, 2020

challenges

 Extremely high luminosities: large statistics (high statistical precision) – control of systematics (@10⁻⁵ level) • Physics event rates up to 100 kHz (at Z pole) strong requirements on sub-detectors DAQ systems Bunch spacing down to 20 ns (at Z pole) "continuous" beams (no power pulsing), Large beam crossing angle – very complex MDI • Large beam crossing angle – emittance blow-up with detector solenoid field (< 2T) F. Grancagnolo - IDEA and CLD at FCC-ee 14/05/2020 3

challenges

Extremely high luminosities:

14/05/2020

large statistics (high statistical precision) – control of systematics (@10⁻⁵ level)
 Physics event rates up to 100 kHz (at Z pole)

strong requirements on sub-detectors DAQ systems

Bunch spacing down to 20 ns (at Z pole)

"continuous" beams (no power pulsing),

Large beam crossing angle – very complex MDI

Large beam crossing angle – emittance blow-up with detector solenoid field (< 2T)
More physics challenges at Z pole:

- luminosity measurement at 10^{-5} luminometer acceptance ≈1-2 µm
- detector acceptance definition at <10⁻⁵ detector hermeticity (no cracks!)
- \circ stability of momentum measurement stability of magnetic field wrt Ecm (10⁻⁶)
- o b/c/g jets separation flavor and τ physics vertex detector precision
- particle identification (preserving hermeticity) flavor physics (and rare processes)

F. Grancagnolo - IDEA and CLD at FCC-ee

	3 double layers + 3 double disks 25μm×25μm pixel 50μm sensor 0.6-0.7% X ₀ per double layer	pixel and µ-strips 7µm×90µm (5µm×5µm 1 st layer) point resolution 3 layers + 7 disks inner tracker 3 layers + 4 disks outer tracker	ECAL 20cm 5m×5m Si-W 1.9mm W 40 layers 22X ₀ , 1λ HCAL 117cm 30mm×30mm Sci-steel 19mm steel 44 layers 5.5λ	90 mm Al coil 2T field 1.5m steel yoke 6 layers RPC 30mm×30mm granularity
	vertex	1-1.5% X ₀ per layer <u>tracker</u>	— calorimeter —	magnet and
IDEA	3 double layers 20µm×20µm double µ-strips 50µm×1mm 4 forward disks	112 layers 1.4 cm square cells 100μm×750μm point resolution	fully projective towers $\Delta \vartheta = 1.125^{\circ}$ $\Delta \phi = 10.0^{\circ}$	30cm total envelope 2T field cold mass + cryostat 0.28 + 0.46 X ₀ 0.6m steel yoke
Solenoid DCH	50μm×50μm 0.6-1% X ₀	50µm×1mm	2880 in barrel 2×1260 end-cap	3 layers µ-RWELL 1.5mm×500mm
14/05/2020	F. Grancagnolo - I	$5\% X_0$ forward DEA and CLD at FCC-ee	8.2λ	11

IDEA Calorimeter

IDEA Calorimeter

Particle Identification

$$\frac{\sigma_{dE/dx}}{(dE/dx)} = 0.41 \cdot n^{-0.43} \cdot (L_{track} [m] \cdot P[atm])^{-0.32}$$
from Walenta parameterization (1980)

dE/dx

truncated mean cut (70-80%) reduces the amount of collected information

n = 112 and a 2m track at 1 atm give

σ ≈ 4.3%

dN_{cl}/dx

 δ_{cl} = **12.5/cm** for He/iC₄H₁₀=90/10 and a **2m track** give

σ ≈ 2.0%

A small increment of iC_4H_{10} from 10% to 20% ($\delta_{cl} = 20/cm$) improves resolution by 20% ($\sigma \approx 1.6\%$) at only a **reasonable** cost of multiple scattering contribution to momentum and angular resolutions.

