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Gravitational Wave Follow-up

m Still no evidence of common astrophysical source of Gravitational Waves
(GW) and neutrinos (IceCube-170922A).

B Such detection would also significantly improve the localization of the source |,

making EM follow-up observations easier.

m Advanced LIGO and Virgo are sending realtime public alerts since April 2019
(O3 run) with a rate of 1/week.
B They have recently published GWTC-2 catalog covering first half of O3.
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ONLY BELOW THE HORIZON

Energy range: tew GeV - TeV
Background in 1000 s: 0.016

FULL-SKY COVERAGE
Energy range: 0.1-100 GeV
Background in 1000 s: 0.007

FULL-SKY COVERAGE
Energy range: 0.1-10 GeV
Background in 1000 s: 0.112
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background rate

Analysis method

Realtime or official (recalibrated) data

In any case

Flux
limits

—— +500 s window Count events Results
atelier centered on trigger Compute bkg database

| Choice of time window size

The £500 s time window was derived
for GW and v emission from GRBs.
This is now widely wused as a
conservative coincidence time window
in many GW-+V sources searches.
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WITH THE SUPER-KAMIOKANDE DETECTOR

GCN notice of catalogued event if observed events

Sample-by-sample statistics

The neutrino flux from a point-source is:

dn
p E G T E_ 2
dE., Dok,

For a given sample s (FC, PC or UPMU):
m expected background B, is known
B observed number of event N,

assuming EZ spectrum

is known
- compute Poisson upper limit on signal

If source position {2 is perfectly known:

Nog
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To take into account wide localisation, we define:

£(¢O) :/(C(Q)¢0]\—£sj!exp)

e (C(Q)¢O +N€XP)PGW (Q)dﬂ
GW probability

distribution

and find Bayesian upper limit (flat prior on flux):
fO¢O’UP £(¢0)d¢0 = 0.90

Example of S190412m (realtime alert)

arXiv:2010.14527
(23 triggers)

GWTC(C-2 catalog (39 triggers)

(33 triggers) GraceDB
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Results of SK GW follow-up of O3 realtime alerts presented at Neutrino 2020
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Ongoing analysis of GWTC-2 events (publication soon...)
m Catalog events: more precise sky localisation, distance estimation and
properties (masses...) of the source objects.

m This could be used to constrain precisely neutrino emission from the source.

One limit per flavour
and per sample
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B Distance uncertainties and correlations covered by using this likelihood:

conversion from Ejgq
. to number of events 1 GW 3D localisation

(r, N E)
— fZizo G k)' ) e ¢ (1) Biso Pi(T'S,,) | Yaw (T, Q)r?drdQ

m It may also be used to combine different GW of the same type to get a

Stronger constrain: product over a selection of GVX

E(Eiso) === Hz E(Z) (Eiso) or L(kV) = Hz £(Z) (kVCZ) e.g. total maSS)

Veske et g arXiv:2001.00566

L(Eiso; TSma VGW)

assuming all objects have exact same emission assuming emission « source characteristic C,;
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Combined analysis

m Define a likelihood and test statistic to separate between signal (point-source) and background:

expected 1 the likelihood
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) (nS v = N(S)' HZ - ( ) (s) event i Ly (nS : 039) GW probability |
signal observed product on TNnpg direction /energy best fit position E ] E F{) . yi
events o selected events istribution

Compute signal significance

m The background distribution of T'S is
obtained using time-scrambled neutrinos
and expected background rate (FC + PC
+ UPMU together).

m The test statistical value for real data is

computed: TS 4.
B The p-value is: pa = /

TSdata

Background TS is computed
using toys with at least one
observed event — p-value is
interpreted as the probability
for background to raise an
observation at least as
extreme as the data, given
that at least one event
was observed.
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Compute flux limits

Inspired from arXiv:2001.00566
m Compute TS distribution for signal injections (consistent with GW localisation),

with ngje=0 (background-only), ngjg=1, ngjg=2.
m Compute Py(TS4..), Pi(TSg..) and PQ(TSdata) the associated "data" probabilities

m Compute likelihood: L(¢0; TSm, Paw) / Z

B F'ind Bayesian upper limit as in Sample—by—sample approach.
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> This gives the most constraining results for each flavour
individually + one can combine flavours (e.g. v, + 7,,)
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Combining flavours require an assumption on
distribution of flavours. Used scenario is:

Pi(TS) using Ve : Vy t Vr = (1:2: 0)source — (1 :1: 1)Earth, ®v = Pp
signal stmulations
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