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Results of SK GW follow-up of O3 realtime alerts presented at Neutrino 2020

Ongoing analysis of GWTC-2 events (publication soon...)
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▪ Still no evidence of common astrophysical source of Gravitational Waves 
(GW) and neutrinos (IceCube-170922A).
▪ Such detection would also significantly improve the localization of the source , 
making EM follow-up observations easier.                   
▪ Advanced LIGO and Virgo are sending realtime public alerts since April 2019 
(O3 run) with a rate of 1/week.
▪ They have recently published GWTC-2 catalog covering first half of O3.
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▪ 50 kton water Cherenkov detector 
▪ Located in Mozumi mine, Gifu-ken, Japan
▪ Sensitive to MeV-TeV neutrinos
▪ Running since 1996, with six different periods
▪ In Summer 2020, Gadolinium was dissolved into 
the water (allow better neutron tagging)

NIM Phys. Res. 501, 418–462 (2003).

&

ℓ

ν

ℓ

ν

μ

ν

For each sample:

Fully-Contained (FC) Partially-Contained (PC) Upward-going μ (UPMU)

effective area
incoming neutrino flux

size of time window

atmospheric 
background rate

Full-sky coverage
Energy range: 0.1-10 GeV
Background in 1000 s: 0.112

Full-sky coverage
Energy range: 0.1-100 GeV
Background in 1000 s: 0.007

Only below the horizon
Energy range: few GeV - TeV
Background in 1000 s: 0.016

Preliminary PreliminaryPreliminary

Baret et al. Astropart. Phys. 35, 1–7 (2011)

The ±500 s time window was derived 
for GW and ν emission from GRBs.                     
This is now widely used as a 
conservative coincidence time window 
in many GW+ν sources searches.

Realtime or official (recalibrated) data

GCN notice of catalogued event

The neutrino flux from a point-source is:

For a given sample s (FC, PC or UPMU):
  ▪ expected background Bexp is known
  ▪ observed number of event Nobs is known
 ➔ compute Poisson upper limit on signal 

assuming E-2 spectrum

If source position Ω is perfectly known:

GW probability
distribution

c(Ω)

One limit per flavour
and per sample

     limit dominated by UPMU: 

     limit dominated by FC:

To take into account wide localisation, we define:

and find Bayesian upper limit (flat prior on flux):

▪ Define a likelihood and test statistic to separate between signal (point-source) and background:

▪ The background distribution of TS is 
obtained using time-scrambled neutrinos 
and expected background rate (FC + PC 
+ UPMU together).
▪ The test statistical value for real data is 
computed: TSdata
▪ The p-value is:

Background TS is computed 
using toys with at least one 
observed event → p-value is 
interpreted as the probability 
for background to raise an 
observation at least as 
extreme as the data, given 
that at least one event 
was observed.

Hussain et al. arXiv:1908.
07706

Aartsen et al. arXiv:2004.
02910
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> This gives the most constraining results for each flavour 
individually + one can combine flavours (e.g.           )

arXiv:2001.00566

Pk(TS) using
signal simulations

Combining flavours require an assumption on 
distribution of flavours. Used scenario is: 
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▪ Find Bayesian upper limit as in sample-by-sample approach.

Veske et al. arXiv:2001.00566

Inspired from 
▪ Compute TS distribution for signal injections (consistent with GW localisation), 
with nsig=0 (background-only), nsig=1, nsig=2.
▪ Compute P0(TSdata), P1(TSdata) and P2(TSdata), the associated "data" probabilities
▪ Compute likelihood:

arXiv:2010.14527

▪ Catalog events: more precise sky localisation, distance estimation and 
properties (masses...) of the source objects.
▪ This could be used to constrain precisely neutrino emission from the source.
▪ Distance uncertainties and correlations covered by using this likelihood:

▪ It may also be used to combine different GW of the same type to get a 
stronger constrain: 

No significant
observation

Preliminary

- 46 GWs with SK running
- 8 coincident neutrinos
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Multi-ring
SK event

assuming all objects have exact same emission assuming emission ∝ source characteristic Ci 
(e.g. total mass)

GW 3D localisation
conversion from Eiso
to number of events
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