How to search for multiple messengers - a general framework beyond

¹Columbia University Physics Department, New York, NY, USA; ²Columbia University Astrophysics Laboratory, New York, NY, USA; ³University of Florida Physics Department, Gainesville, FL, USA;

All multi messenger searches are currently looking for two messenger coincidences, i.e.

- \Rightarrow Gravitational waves (GW) neutrinos
- ⇒Neutrinos-gamma ray bursts
- \Rightarrow ...

Multi messenger detections enable

- \Rightarrow Better understanding of physical processes
- \Rightarrow Elevated significance of subthreshold detections with correlations
- \Rightarrow Guidance to astronomers with real-time follow-ups
- ◊i.e. IceCube's real-time follow-up of GW candidates in O3

 \Rightarrow No need of a detector upgrade!

- A triple coincidence from the real-time follow-up? (Dec '19) \Rightarrow GW candidate S191216ap by LIGO/Virgo
- \Rightarrow Potential neutrino counterpart from

IceCube's real-time follow-up

 \Rightarrow HAWC subthreshold gamma ray coinciding with the GW and the neutrino on the sky

two messengers arXiv.2010.04162

Doğa Veske^{1,*}, Zsuzsa Márka², Imre Bartos³ and Szabolcs Márka¹*E-mail: <u>dv2397@columbia.edu</u>

Many messengers many hypotheses...

 \Rightarrow Astrophysical or noise

 \Rightarrow Related or unrelated

For *n* messengers, there are f(n+1) hypotheses

$$f(n) = \sum_{i=0}^{n-1} \binom{n-1}{i} f(i), \ j$$

What is the optimal test statistic for this case?

For two hypotheses, likelihood ratio is the optimal test statistic.

 \Rightarrow Model independent optimal multi messenger search doesn't exist!

Model dependent optimal test statistic with Bayesian statistics:

Common source relation through a source parameter: $P(\mathbf{x}|H_a^b) = \int P(\mathbf{x}|m{ heta}, H_a^b) P(m{ heta}|H_a^b) dm{ heta}$

hypothesis

Future outlook: Increasing sensitivities and new detectors (i.e. upgrades in LIGO/ Virgo/KAGRA, IceCube Gen2, KM3NeT, Vera Rubin Observatory, Ultrasat...) will provide greater amount of data, eventually creating multiple coincidences, requiring analysis of the coinciding multiple messengers! The treatment here is was designed to be adoptable by the LLAMA pipeline infrastructure, which is used for GW+neutrino searches [1,2] in the advanced gravitational-wave detectors era.

f(0) = 1

Independent of **x**

Sub-hypothesis likelihoods

