Radio Detection of Neutrinos and
Cosmic Rays




Scientific motivation
Thankfully all covered by Kumiko
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Radio emission of showers

The story of the two effects and the refractive index

- Radio emission of showers can be explained from first principles and three aspects

- Magnetic field: Geomagnetic field, Lorentz-force

- Charge imbalance: Particle Physics processes
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Radio emission of showers

- The key evidence: Polarization
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Radio emission of showers
How do we know this?

- The key evidence: Polarization 200 LOPAR . Phys. Rev. 94193010
- The two processes stem from 200
slightly different heights

100

- Time difference = phase offset
between two emission
components

Distance along &; ;.5 [M]

- Leads to circular polarization
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- Emission is due to both geomagnetic emission (dominant in air) and
Askaryan emission

- Geosynchrotron radiation is a correction of < 1% to these effects
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Radio emission of showers

The emission is only strong if it LOFAR, Astropart Phys, 65, 2015, 11-21
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Radio emission of showers in dense media

A difference between detecting cosmic rays and neutrinos

 Showers in media are smaller, — o=towmmr=0"||
i.e. more intense charge ot ol
imbalance and less influence of ] B
geomagnetic field £ j( o :.
« Higher frequencies due to
smaller size
) Index Of refraction >> 1, i 0 5 10 t[l;?s] 20 25 30 0 200 400 660[[Mz:|cl;(]J 1000 1200 1400
Cherenkov cone, travel on non-
straight lines with changing n vertex 7/7
ray path
. . - dipoles
« Ice attenuates the signal, air - Lroe
E=2e+18eV
does not i
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Detecting radio emission of air showers

e Search for a very broad-band
nanosecond scale pulse

« Detectable typically at shower
energies > 1015 eV, i.e. rare signal

« Sampling speeds of at least 200 MHz

» Needs full waveform sampling for
frequency content and polarization

« Preferably stations run independently
at very low power

* Duty-cycle (almost) independent of
weather
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Detecting radio emission of air showers

Experimental challenges and opportunities
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Unfortunately, a lot of things
make radio pulses

Self-triggering and event
identification remain a challenge

Site quality important

New opportunities in modern
data analysis methods




Detecting radio emission of air showers

A.Aab et al., PRL 116 (2016) no.24, 241101
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Radio detection provides and
excellent energy estimator

Calculation from first principles

Very little systematic uncertainties
(< 5%) in method

M. Gottowik et al. Astropart. Phys. 103 (2018) 87
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Detecting radio emission of air showers

* Negligible corrections due to
atmospheric effects on energy-scale

* Auger has so far shown the most
thorough detector calibration,
obtaining an absolute scale
uncertainty of 14 %

« Aradio energy estimate could
reduce systematic uncertainties
between observatories with
modest experimental efforts

* Firsttry: LOFAR vs. Auger,
comparing Auger Surface Detector
to LORA scintillator array at LOFAR:
ECRLorA/ECRAuger= 1.0620.20
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Detecting radio emission of air showers

« Radio pattern is very sensitive to Xmax i "\
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Detecting radio emission of air showers
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Radio detection of air showers

Where will it go next? Upgrade of the Pierre Auger Observatory

Equipping every Auger SD station
with a radio antenna and scintillator

The first truly large-scale
implementation of the radio
technique

First chance to access the radio
emission of showers of the highest
energies

Combination of many ways of air
shower detection, will lower
systematics on all parameters

Mean-time: Many new/improved methods for reconstruction and simulations

Interferometry (Schoorlemmer, Carvalho), single-station energy reconstruction
(Welling et al.), template synthesis (Butler et al.), index of refraction corrections
(Schluter et al.), simulation interpolations (Tueros, Zilles), ...
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Radio detection of other particles

Why it is interesting for neutrinos?

* Any shower containing
an electro-magnetic
cascade creates radio
emission

« Asimilar experimental
approach for:

e air showers from
cosmic rays

e air showers from
poulnoinduces AU i oleersen
decays

 inice showers
following a neutrino
interaction

« All experiments utilize negligible radio
attenuation in air and kilometer-scale
attenuation length in ice
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Radio detection of neutrinos

* Looking at tau’s emerging from the Earth, creates large effective volumes for
neutrinos, radio emission is (almost) not attenuated in air

« Radio detectors probably most effective, when they use mountainous terrain
« Have to exploit economies of scale for very cheap antenna stations
« Largest challenge: suppress (human-made) background close to the horizon

» A couple of projects on-going or proposed,
e.g. GRAND, BEACON, TARGOE (radio),
TAMBO (water-Cherenkov), TRINITY (air-Cherenkov), ...

+
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Radio detection of (tau)-neutrinos

Looking for air showers but stemming from neutrinos

GRAND: concept: 200’000 radio antennas over 200'000 km2.i.e.~ 20
hotspots of 10'000 antennas over favorable sites in China and
worldwide, viewing shower from ‘the side’

» Current Status: GRANDProto300, hardware developed, but site search
delayed (COVID), Staged approach: GRAND 10k (~ 2025), GRAND
200k

* BEACON (or TAROGE) concept: 100-1000 stations with ~10 antennas
each, viewing shower from top of mountain ,

\\ 7
GRAND HorizonAntenna,
;t;/’ fully field-tested (2018)

GRAND whitepaper
arXiv:1810.09994
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Radio detection of neutrinos

« Cold polar ice has attenuation length in the order of kilometers
» One radio station can typically monitor 1 km3 of ice (= the size of IceCube)

« Detection threshold around 10 PeV shower energy, determined not by array
spacing but pulse height above thermal noise

« > 100 kms3 needed to obtain sensitivity for cosmogenic neutrinos, neutrinos from
UHECR with CMB, if very few protons at highest energies

 Human-made background typically smaller in
polar regions, event identification and

self-trigger less challenging
« Many early experiments: ?
RICE, ARA, ARIANNA, ... and of course, ANITA




Radio detection of neutrinos

Neutrino limits from radio detection of neutrinos
towards high energies, not competitive to IceCube
below 1010 GeV

So far: experiments focussed on proof-of-concept,
reconstruction and performance

Exception: ANITA I-lll: Mystery events — behave like cosmic ray signals, but

show signal polarization/polarity like neutrino from deep trough Earth

If truly neutrino: disagreement with lceCube limits, difficult to reconcile with
Standard Model

Other explanations offered: ice, background, etc.

ANITA 1V: again 4 events with inconsistent polarity, but near horizon,
nothing ‘mysteriously’ steep arXiv:2008.05690

Follow-up experiment proposed with better low energy sensitivity and more
exposure: PUEO balloon arXiv:2010.02892
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Radio detection of neutrinos

Where will it go next?

« RNO-G: Start construction in 2021

« 35 stations as first production scale
implementation for neutrino detection

* Deployment in Greenland allows for fast
development turn-around

» Europe-led experiment with
members from all previous "5
in-ice experiments

« Largest yearly neutrino
sensitivity > 10 PeV

« Concept and design paper:
arXiv:2010.12279
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https://arxiv.org/abs/2010.12279

Radio detection of neutrinos

RNO-G interesting sensitivities to transients
and diffuse flux above 10 PeV

Sensitive to all 3 flavors (NC and CC) with

flavor-sensitivity under study

Garcia-Fernandez et al. PRD, 102, 083011 (2020)

Muon background may become interesting
depending on hadronic interaction models
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https://arxiv.org/abs/2010.12279
https://arxiv.org/abs/2003.13442

Radio detection of neutrinos

* lceCube Collaboration has put forward a baseline design for IceCube-Gen2
that includes a large radio array: arXiv:2008.04323

« Sky coverage of South Pole complimentary to Greenland

« Exact experimental design currently under review at IceCube-Gen2 working

group

* Preliminary Design Review expected for fall 2021

vy Gen2-Radio ® lceCube-Gen?2
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Conclusions

Exciting past, hopefully even more exciting future
« 10 years ago the knowledge about emission mechanisms and potential of the
radio technique was limited

« Community has established a solid theory and has shown the measurements
to support it for both air showers and neutrinos

« Both air shower and neutrino experiments are embracing radio detection as a
tool to answer the question about the origin of ultra-high energy cosmic rays

* Many exciting experiment being constructed using radio detection
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