Radio Detection of Neutrinos and Cosmic Rays

Scientific motivation

Thankfully all covered by Kumiko

The story of the two effects and the refractive index

- Radio emission of showers can be explained from first principles and three aspects
 - Magnetic field: Geomagnetic field, Lorentz-force
 - Charge imbalance: Particle Physics processes
 - Index of refraction: Relativistic compression

How do we know this?

- The key evidence: Polarization
 - Geomagnetic effect: Lorentz-force, polarization orthogonal to shower axis and magnetic field
 - Askaryan effect: Polarization points towards shower axis

How do we know this?

- The key evidence: Polarization
 - The two processes stem from slightly different heights
 - Time difference = phase offset between two emission components
 - Leads to circular polarization

- Emission is due to both geomagnetic emission (dominant in air) and Askaryan emission
- Geosynchrotron radiation is a correction of < 1% to these effects

There is also a Cherenkov ring but not Cherenkov emission

- The emission is only strong if it arrives coherently (at the same time for all frequencies, high frequencies more pronounced effect)
- At the Cherenkov angle, an enhancement is seen, in air this is very close to the shower axis
- Same effect for showers in ice, but here Cherekov angle ~ 52 degrees, so it looks much more like "Cherenkov radiation", but it is not
- If one had the same shower development in vacuum, it would still radiate

Radio emission of showers in dense media

A difference between detecting cosmic rays and neutrinos

- Showers in media are smaller, i.e. more intense charge imbalance and less influence of geomagnetic field
- Higher frequencies due to smaller size
- Index of refraction >> 1, Cherenkov cone, travel on nonstraight lines with changing n
- Ice attenuates the signal, air does not

Experimental challenges and opportunities

- Search for a very broad-band nanosecond scale pulse
- Detectable typically at shower energies > 10¹⁵ eV, i.e. rare signal
- Sampling speeds of at least 200 MHz
- Needs full waveform sampling for frequency content and polarization
- Preferably stations run independently at very low power
- Duty-cycle (almost) independent of weather

Time (µs)

Jelley et al, Nature 1965

8

Experimental challenges and opportunities

-100

-150

50

100

150

Time [ns]

200

250

300

ARIANNA Coll., Astropart. Phys. 90 (2017) 50

- Site quality important
- New opportunities in modern data analysis methods

200

250

300

-150

50

100

150

Time [ns]

What is in it for the science?

- Radio detection provides and excellent energy estimator
- Calculation from first principles
- Very little systematic uncertainties(< 5%) in method

M. Gottowik et al. Astropart. Phys. 103 (2018) 87

DESY. Nelles, Multi-messenger Workshop, 2020

Detecting radio emission of air showers

What is in it for the science?

- Negligible corrections due to atmospheric effects on energy-scale
- Auger has so far shown the most thorough detector calibration, obtaining an absolute scale uncertainty of 14 %
- A radio energy estimate could reduce systematic uncertainties between observatories with modest experimental efforts
- First try: LOFAR vs. Auger, comparing Auger Surface Detector to LORA scintillator array at LOFAR: ECRLORA/ECRAuger= 1.06±0.20

What is in it for the science?

- Radio pattern is very sensitive to X_{max}
- LOFAR has presented high precisions X_{max} measurements, $\sigma_{X_{max}}$ = 17 g/cm²

- Tension to Auger FD
 measurements
- Eagerly awaiting RD/FD hybrid Johannes Schulz Radboud University Nijmeren Study to possibly resolve this

Dgeo /~

What is in it for the science?

- Radio emission stems from the electro-magnetic component of the shower
- Attenuation in the atmosphere is negligible, radio emission of horizontal showers still accessible

 Combining muon measurements with radio antennas provide a different handle on composition

Radio detection of air showers

Where will it go next?

- Equipping every Auger SD station with a radio antenna and scintillator
- The first truly large-scale implementation of the radio technique
- First chance to access the radio emission of showers of the highest energies
- Combination of many ways of air shower detection, will lower systematics on all parameters

Upgrade of the Pierre Auger Observatory

- Mean-time: Many new/improved methods for reconstruction and simulations
 - Interferometry (Schoorlemmer, Carvalho), single-station energy reconstruction (Welling et al.), template synthesis (Butler et al.), index of refraction corrections (Schlüter et al.), simulation interpolations (Tueros, Zilles), ...

Radio detection of other particles

Why it is interesting for neutrinos?

- Any shower containing an electro-magnetic cascade creates radio emission
- A similar experimental approach for:
 - air showers from cosmic rays
 - air showers from neutrino induces tau decays
 - in ice showers following a neutrino interaction

 All experiments utilize negligible radio attenuation in air and kilometer-scale attenuation length in ice

Tau neutrinos emerging from the Earth

- Looking at tau's emerging from the Earth, creates large effective volumes for neutrinos, radio emission is (almost) not attenuated in air
- Radio detectors probably most effective, when they use mountainous terrain
- Have to exploit economies of scale for very cheap antenna stations
- Largest challenge: suppress (human-made) background close to the horizon
- A couple of projects on-going or proposed, e.g. GRAND, BEACON, TARGOE (radio), TAMBO (water-Cherenkov), TRINITY (air-Cherenkov), ...

Looking for air showers but stemming from neutrinos

- GRAND: concept: 200'000 radio antennas over 200'000 km², i.e.~ 20 hotspots of 10'000 antennas over favorable sites in China and worldwide, viewing shower from 'the side'
 - Current Status: GRANDProto300, hardware developed, but site search delayed (COVID), Staged approach: GRAND 10k (~ 2025), GRAND 200k
- BEACON (or TAROGE) concept: 100-1000 stations with ~10 antennas each, viewing shower from top of mountain

GRAND HorizonAntenna, fully field-tested (2018)

GRAND whitepaper arXiv:1810.09994

Neutrino interactions in ice

- Cold polar ice has attenuation length in the order of kilometers
- One radio station can typically monitor 1 km³ of ice (= the size of IceCube)
- Detection threshold around 10 PeV shower energy, determined not by array spacing but pulse height above thermal noise
- > 100 km³ needed to obtain sensitivity for cosmogenic neutrinos, neutrinos from UHECR with CMB, if very few protons at highest energies
- Human-made background typically smaller in polar regions, event identification and self-trigger less challenging

and of course, ANITA

 $\nu_{e,\mu,\tau}$

Results so far

- Neutrino limits from radio detection of neutrinos towards high energies, not competitive to IceCube below 10¹⁰ GeV
- So far: experiments focussed on proof-of-concept, reconstruction and performance

- Exception: ANITA I-III: Mystery events behave like cosmic ray signals, but show signal polarization/polarity like neutrino from deep trough Earth
 - If truly neutrino: disagreement with IceCube limits, difficult to reconcile with Standard Model
 - Other explanations offered: ice, background, etc.
 - ANITA IV: again 4 events with inconsistent polarity, but near horizon, nothing 'mysteriously' steep <u>arXiv:2008.05690</u>
 - Follow-up experiment proposed with better low energy sensitivity and more exposure: PUEO balloon <u>arXiv:2010.02892</u>

Where will it go next?

- RNO-G: Start construction in 2021
- 35 stations as first production scale implementation for neutrino detection
- Deployment in Greenland allows for fast development turn-around
- Europe-led experiment with members from all previous in-ice experiments
- Largest yearly neutrino sensitivity > 10 PeV
- Concept and design paper: arXiv:2010.12279

Clean air/snow sectors

arXiv:2010.12279

Radio detection of neutrinos

Where will it go next?

- RNO-G interesting sensitivities to transients and diffuse flux above 10 PeV
- Sensitive to all 3 flavors (NC and CC) with flavor-sensitivity under study
- Muon background may become interesting depending on hadronic interaction models

Garcia-Fernandez et al. PRD, 102, 083011 (2020)

DESY. Nelles, Multi-messenger Workshop, 2020

Where will it go next?

- IceCube Collaboration has put forward a baseline design for IceCube-Gen2 that includes a large radio array: <u>arXiv:2008.04323</u>
- Sky coverage of South Pole complimentary to Greenland
- Exact experimental design currently under review at IceCube-Gen2 working group
- Preliminary Design Review expected for fall 2021

Conclusions

Exciting past, hopefully even more exciting future

- 10 years ago the knowledge about emission mechanisms and potential of the radio technique was limited
- Community has established a solid theory and has shown the measurements to support it for both air showers and neutrinos
- Both air shower and neutrino experiments are embracing radio detection as a tool to answer the question about the origin of ultra-high energy cosmic rays
- Many exciting experiment being constructed using radio detection

