

Cosmogenic and astrophysical neutrinos

Cosmic backgrounds interactions on CMB, UV/ opt/IR photons

cosmogenic neutrino and gamma-ray production

Backgrounds

- radiative? baryonic?
- evolution, density?
- magnetic field: deflections?

associated neutrino and gamma-ray production

Astrophysical neutrinos

Current multi-messenger data: useful to understand UHECRs?

Cosmic backgrounds

interactions on CMB, UV/opt/IR photons

cosmogenic neutrino and gamma-ray production

Backgrounds

- radiative? baryonic?
- evolution, density?
- magnetic field: deflections?

associated neutrino and gamma-ray production

Secondaries take up 5-10% of parent cosmic-ray energy

$$E_{v} \sim 5\% E_{CR}$$
 $E_{CR} > 10^{18} eV$

 $E_{\nu} > 10^{16} \text{ eV}$

 $E_{Y} \sim 10\%~E_{CR}$

IceCube neutrinos do not directly probe UHECRs

Actually, none of the current multi-messenger data (except UHECR data) can directly probe UHECRs ... but they help :-)

Alves Batista, de Almeida, Lago, KK, 2018 GRAND Science & Design, 2018 KK, Allard, Olinto 2010

The guaranteed cosmogenic neutrinos

Cosmogenic neutrinos: principal ingredients

"not-so-free" parameters

- A flux normalisation
- **y** injection spectral index
 - $R_{\rm max}$ (max. rigidity ~ max. proton energy)
- composition
- source evolution history

- depend strongly on observations of UHECRs
- less dependent but affects injection spectrum

Information from UHECR spectra and composition

Alves Batista, de Almeida, Lago, KK, 2018

- if emissivity evolution free parameter \longrightarrow best fit m = -1.5
- Negative source evolution:
 - e.g., tidal disruption events
 - cosmic variance local dominant of sources
- very hard spectral indices difficult to reconcile with most particle acceleration models. $\alpha > \sim 1$ favored in theory.

UHECR parameters

- A flux normalisation
- α injection spectral index in $E^{-\alpha}$
- R_{max} (max. rigidity ~ max. proton energy)
- composition
- source evolution e.g., SFR/AGN or in (1+z)^m

phenomenologically reasonable models with good deviances

- and to the parameters for apropriate appropriate for the property in the parameters.								
m	α	$\log(R_{\rm max}/{ m V})$	$f_{ m p}$	$f_{ m He}$	$f_{ m N}$	$f_{ m Si}$	$f_{ m Fe}$	D
-1.5	+1.00	18.7	0.0003	0.0002	0.8867	0.1128	0.0000	1.46
SFR	+0.80	18.6	0.0764	0.1802	0.6652	0.0781	0.0001	1.63
AGN	+0.80	18.6	0.1687	0.1488	0.6116	0.0709	0.0000	1.59
GRB	+0.80	18.6	0.1362	0.1842	0.6059	0.0738	0.0000	1.60

Table 1. Best-fit parameters for specific spectral indices.

Learning from secondary neutrinos?

Alves Batista, de Almeida, Lago, KK, 2018 GRAND Science & Design, 2018 KK, Allard, Olinto 2010 Van Vliet et al. arXiv:1707.04511

Computing astrophysical neutrino fluxes

mechanisms:

shock acceleration magnetic reconnection...

at various locations:

inner/external/side jet wind accretion disk...

—> max. acceleration energy spectrum

Cosmic-ray acceleration

ejecta

jet

wind

Radiative + hadronic backgrounds

density, spectra, time evolution in acceleration region and beyond

Ex: red kilonova ejecta

opacity (lanthanides) $t_{\rm esc} \approx \left(\frac{3M\kappa}{4\pi R^2} + 1\right)\frac{R}{c}$

• Fall-back

 $\dot{Q}_{
m fb} = \epsilon_{
m fb} \dot{M}_{
m fb} c^2 \;\;$ mass accretion rate

• Nuclear reaction Barnes et al. 2016 $\dot{Q}_{
m r}=M\,X_{
m r}\,\dot{e}_{
m r}(t)$ M. R. Drout et al, 2017 nuclear mass energy lanthanides mass fraction

V. Decoene PhD

Cosmic-ray interactions + cooling Neutrino production

Decoene et al. 2020

Diffuse flux

integrated over the whole population

unique shapes for various sources (because of interaction backgrounds)

Can we hope to detect very high-energy neutrino sources?

Neutrinos don't have a horizon: won't we be polluted by background neutrinos?

Fang, KK, Miller, Murase, Oikonomou JCAP 2016

boxes for experiments assuming neutrino flux: 10-8 GeV cm-2 s-1

- good angular resolution (< fraction of degree)</p>
- number of detected events > 100s

Another possibility even with lower statistics: Going for transients!

coincident MM+neutrino detection: great signatures to do neutrino astronomy

UHE neutrino production for transients

many transient sources could make it Guépin & KK 2016

Optimizing the detectors locations on Earth to detect transients?

- detector instantaneous field of view
- location on Earth + rotation

- duration

- multi-messengers?

Expected number of neutrino events short burst model (e.g., Kimura et al. 2017, 40 Mpc)

