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Widely considered GRB models

GRBS are the brightest known objects
L(~1MeV) =~ 10°2erg/s,
T~10s,
At~10 ms observed in a significant fraction,
100 MeV photons observed in some.

* Most models: radiation produced by internal
energy dissipation in a highly relativistic jet,
driven by rapid mass accretion onto a compact
object (BH/NS).
v>100 based on 100 MeV photons’ escape.

« 2 scenarios
- e-p jet, dissipation and particle acceleration
via internal collisionless shocks
[partial understanding of micro-physics].
- EM jet, dissipation and particle acceleration
via magnetic reconnection
[limited understanding of micro-physics].

Relativistic flows driven by
BH accretion.
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Common e-p jet models

Electrons accelerated by
collisionless shocks.

In the jet frame, the internal (&
reverse) shocks are mildly
relativistic.

o
- E>— = Const. e spectrum.

- Magnetic field near equipartition.

Radiation produced by synchrotron
and IC emission.

- Some challenges in explaining the y-
ray spectra (“photospheric models")
- "Afterglow" emission well accounted

. an
for with E?2 d—g = Const and near

equipartition B.
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p acceleration in GRBs

In the region where e- are
accelerated, p would also be.

- Max p energy

1/2
21 (100 L
<10 () ) -

[EW 95, Milgrom & Usov 95, Vietri 95]

- Min y to avoid acceleration
suppression by radiation losses:
v > 100.

Consistent with y inferred from

escape of 100 MeV photons.

[EW 95]

(Heavy nuclei dissociated by radiation
field.)
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Extra-Galactic flux of GRB UHE p's

Energy production rate
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The proton generation rate required
to produced the full >10%eV CR flux:
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The fraction of >10%eV CR flux
contributed by GRB protons:
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If GRBs are produced by e-p jets, they
are likely to produce a p-flux, which is a
significant fraction of the > 10%¢V CR
flux (and a small fraction at lower

energy).

[EW 95]
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PAO/TA composition constraints

PAO X,,.x data commonly interpreted as a heavy mix.
Model X, variance inconsistent (smaller than) measured at >10%%eV.
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PAO X,,.x data commonly interpreted as a heavy mix.

PAO/TA composition constraints

* Model X, variance inconsistent (smaller than) measured at >10%%eV.
* A proton component, with f,, = 0.1, significantly improves (5c) the fit.
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PAO/TA composition constraints

PAO X,,.x data commonly interpreted as a heavy mix.
A proton component, with f, > 0.1, significantly improves (5c) the fit.

Some questionable ad-hoc model choices:

- Generation spectrum E? Z—Z x E,
- Acceleration "cutoff” at 10'95eV- a chance coincidence with p-GZK,
- Composition @ source H: He : Heavier=1:1:1,

ho known astrophysical system.
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PAO/TA composition constraints

« PAO X, data commonly interpreted as a heavy mix.
Model X, variance inconsistent (smaller than) measured at >10%%eV.
A proton component, with f, > 0.1, significantly improves (5c) the fit.

« Major uncertainties due to interaction models’ uncertainties.
- Model uncertainty may be larger than spanned by the
‘generator’ span (QGSJET, EPOS, SIBYLL)?
- Data inconsistent with models (see e.g. Sergey Ostapchenko's talk):
PAO data inconsistent with QGSJET, consistent with EPOS that
probably underestimates the X, ., variance; X* ., - Xox -

« Experimental discrepancies- e.g.
- PAO/TA spectra.
- TA consistent with QGSJET & implies a very light composition.

A robust conclusion RE composition cannot be drawn.
fp = 0.1 cannot be ruled out, may be required.




The significance of UHECR composition

EM acceleration:

L

Z>10

46 T2 ( E/Z \?
> 10 V/c (1020eV) erg/s .

- Several candidate sources.

Z=1, p - 2 candidate transient sources,
Rapid mass accretion onto BHs.

- Gamma-ray bursts (GRB),

- Tidal disruption of stars (TDE) by

newly formed solar mass BHs;

massive BHs at galaxy centers,
MAY produce "GRB-like" jets.

( - Young, ms, 10136 Neutron Stars? If they exist...)

Relativistic flows driven by
BH accretion.
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GRB prompt v's

p-v interaction at the
internal/reverse shocks will produce
heutrinos.

p acceleration occurs with similar
efficiency and max E at all radii (up
to deceleration).

Neutrinos are produced efficiently
at the smallest collision radii only:
L52 1 E > Eb

Ty = 1
P V3400At10rrs{E/Eb E <Ep

1  E>E,
E/E, E <E,

E, =107(y/300)? GeV

= 11, (100MeV) {

p’s lose <10% of their energy to m’s.
Prompt v’s:

q)grb:O'O6 fp,gl‘b CDW]B (at E>Eb/20)
[EW & Bahcall 97]
dyp ~ 1078 GeV fl
wB ~ 7.4y Pperflavor
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GRB Prompt v's: Predictions vs Observations

TIceCube & ANTARES limits (90% CL)
at 0.1 PeV:
ANTARES @< 10% Dy
IceCube D1, < 0.4% Dy
(5 expected, none detected)

Imply f .,<1 or 7,,(100MeV) <I,
or both.

A positive detection would be highly
significant, e.g.

- Identify UHECR p sources,

- Support e-p dominated jets.

IV fp’ rb X WB [EW & Bahcall 97]
lz 10%
= 1%v GRB
0.1 1 E (PeV)

[EW & Bahcall 97; Ahlers et al. 11; Hummer, Baerwald, and Winter
12; Li 12; He et al 12 ...Tamborra & Ando 15, Bustamante et al. 17]

Due to limited statistics and existing model uncertainties,

the current negative result does not have major

implications to common GRB models.

more stringent constraints.

Significantly larger detectors are required for detection/




Identifying the CR sources

IC's v's are likely produced by the "calorimeters” surrounding the sources.

Prompt emission from the source, ® « ®yyp.
Identifying the sources is, and will remain, challenging.

UHECRs are likely produced by transient "bursting” sources.
Temporal (prompt) v—y association,
is The most promising way to source identification.
Requires:

Wide field EM sky monitoring,

Real time alerts for follow-up of HE v events,

and
Significant [x10] increase of the v detector mass at ~100TeV.

GRBs: v-y timing (10s over Hubble distance)
9 LI TO 1:1016; WEP 1-0 1:106 . [EW & Bahcall 97; Amelino-Camelia,et al.98;

Coleman &.Glashow 99; Jacob & Piran 07, Wei et al 16]



GRBs & heavy nuclei

*  Heavy nuclei in (10°%erg/s) GRBs
- May be entrained (for a jet propagating through a star)
or formed in cold (<<1MeV) outflows, and
- May survive disintegration if accelerated at r~10%cm.

[e.g. Lemoine 02, Beloborodov 03, Metzger et al. 11, Murase et al. 12,
Globus et al. 15, Winter et al. 15, Murase et al 18]

Enhances model's flexibility, difficult to rule out...

* heavy nuclei survival more easily in LL, L<10*°erg/s.
Have been suggested as high Z UHECR sources,

[e.g. Murase et al. 08, Horiuchi et al. 12, S. Shibata & Tominaga 15, Zhang et al. 18]

and as IceCube neutrino sources.
[e.g. Murase et al. 06, Gupta & Zhang 07, Murase & loka 13, Liu & Wang 13]

** Not clear that LL GRBs are produced by relativistic jets,
If produced by "shock breakout”- no UHE CRs and V's.

+  "Chocked" GRB jets have also been suggested to dominate
IceCube's v signal.

[e.g. Meszaros & EW 01, Senno, Murase, and Mészaros 16]



Summary & Outlook

HL, 10°2erg/s, GRB jets are capable of accelerating p's to 102%V.

- EZZ—: ~ Const., f, = 10% atE > 10'%eV  (for e-p dominated jets),

- @y orp ~ 0.01(0.1)f, g at 0.1(1) PeV (for common y production models).

Current experimental constraints
- UHECRs: Heavy composition at E > 10'%eV, f,, ~ 10% allowed & preferred.
HE interaction model uncertainties (inconsistencies)
- Large composition uncertainty, f, may be > 10% .
-HE v'st @, o1, < 0.01 Dyp at 0.1 PeV.

What is required for a conclusive test of the model/ UHECR source identification?
* A (reliable) measurement of the p-fraction at UHE.
* Prompt y-v coincidence.

Can be addressed by next generation CR, v & y telescopes.
* UHECRs: Auger’, TA.
* Vst 0.1Py5 = 107°GeV/cm?ssr @ 108 — 101°GeV (Radio).
* v'si Myg~10 Gton @ 10° — 108GeV (IceCube Gen 2, KM3NeT, GVD-2).
* Wide field EM monitoring, X/y telescopes (real time alerts).
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