Transition from Galactic to Extragalactic Cosmic Rays a theoretical perspective

Roberto Aloisio

Gran Sasso Science Institute INFN – Laboratori Nazionali del Gran Sasso

Cosmic Rays and Neutrinos in the Multi-Messenger Era Institute de Physique du Globe Paris December 7th – 11th 2020

CR Observations and the transition GCR-EGCR

In Cosmic Rays physics we can study sources, production mechanisms and the physics of propagation only through three basic observables

✓ Anisotropy

✓ Mass composition

The all-particle spectrum is a broken power law with few structures: knee, second knee, ankle, strong suppression at UHE.

<u>Ultra High Energy Cosmic Rays – Spectrum</u>

Spectral features

- ✓ Second knee: $\sim 2 \times 10^{17}$ eV
- \checkmark Ankle: $\sim 3 \times 10^{18} \text{ eV}$

Transition GCR-EGCR

- Expected changes in the mass composition across the transition region: from heavy to light (see later).
- ✓ Anisotropy observations can provide stringent limits on the transition region.

<u>Ultra High Energy Cosmic Rays – Anisotropy</u>

- ✓ Auger Intermediate anisotropy: clustering at E>38 EeV (3.8 σ)
- **Hints of extragalactic sources**

 \checkmark TA hotspot: clustering at E>57 EeV (3 σ)

✓ Large scale anisotropy: dipole toward galactic anti-center E>8 EeV (6.0σ) Extragalactic origin

- Above 8 EeV, $d_{\perp} = 6.0^{+1.0}_{-0.9}$ % with a phase pointing toward the galactic anticenter. Signal of a possible extragalactic origin.
- ✓ Below 8 EeV, only upper bounds on d_{\perp} at the level of 1%
- Below 1 EeV, amplitude is not significant, the phase is not far from the right ascension of the galactic center. Signal of a possible galactic origin.

Galactic CR: knees and acceleration

- ✓ The knee as a signature of a rigidity dependent acceleration
- The all-particle spectrum is the result of the sum of the spectra of different species, with a cut-off energy rigidity dependent

$$E_Z = ZE_0^p$$

$$\frac{d\Phi_Z}{dE}(E) = \Phi_X^0 E_Z^\gamma \left[1 + \left(\frac{E}{E_Z} \right)^{\epsilon_c} \right]^{-\frac{\Delta\gamma}{\epsilon_c}}$$

J.R. Horandel et al. (2003)

✓ Maximum energy of accelerated protons (need for "Pevatron" sources)

$$E_0^p \gtrsim 1 \text{PeV}$$

✓ Diffusion of charged particles back and forth through the shock leads to

$$\Delta E \simeq E(4/3)(U_1 - U_2)/c$$

- Particles are accelerated to a power law spectrum $Q(E) \propto E^{-\gamma}$
- ✓ The slope of the spectrum depends only on the shock compression factor, in the case of strong shock (M>>1) Q~E⁻².
- The maximum acceleration energy depends only on diffusion in the shock region. The ISM magnetic turbulence (as it follows from B/C observation) is too low (providing only CR at GeV energy). It is needed additional turbulence to reach $E_{max} \sim 10^5-10^6$ GeV.

Diffusive Shock Acceleration

Tycho, X

X-rays observations

Typical size of the observed filaments $\sim 10^{-2}$ parsec

$$\Delta x \approx \sqrt{D(E_{max})\tau_{loss}(E_{max})} \approx 0.04 \ B_{100}^{-3/2} \ \mathrm{pc}$$

Comparison with the observed thickness leads to a B-field estimate

$$B \simeq O(100 \mu G)$$

The case of Tycho

- ✓ SNIa exploded in roughly homogeneous ISM (regular spherical shape)
- ✓ From X-ray observations B~300 μG
- ✓ Maximum energy protons E_{max} ~500 TeV

Steep spectrum hard to explain with leptonic emission

Gamma ray observations

- Leptonic emission. ICS of relativistic electrons on photon background has a flatter spectrum respect to CR: $E^{-(\gamma+1)/2}$
- ✓ Hadronic emission. pp→ π^0 →γγ conserves the same spectrum of CR: E-γ
- Important experimental confirmation of the credibility level of theories based on DSA.

 Space resolved gamma ray observations would test different theoretical hypothesis.

Streaming instability

Super-Alfvenic streaming of CR leads to the excitation of magnetic turbulence δB at the resonant wavenumber $k=1/r_L$.

Locally at the shock front this turbulence can reach $\delta B/B \sim 50$, while in the ISM $\delta B/B <<1$.

CR injected

- particles escaped during the ejecta dominated (free expansion) and Sedov-Taylor phases (emission peaked at p_{max})
- particles released in the ISM after expansion ends.

Maximum energy

 \checkmark particles escape $\frac{D(E_{max})}{V_{sh}} \simeq \chi R_{sh}$ $\chi < 1$

NOTE: Hillas criterion $r_L(E_{max}) = R_{sh}$ is an upper limit, it overestimates the actual maximum energy by a factor of c/V_{sh}

$$10^{6}$$

$$10^{5}$$

$$10^{4}$$

$$E_{SN}=10^{51}erg$$

$$M_{ej}=1.4M_{\odot}$$

$$10^{3}$$

$$10^{1}$$

$$10^{0}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{0}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{4}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{4}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{4}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{4}$$

$$10^{1}$$

$$10^{2}$$

$$10^{3}$$

$$10^{4}$$
Time (years)

✓ Type Ia SN

$$E_{max}^{p} = 0.01 \left(\frac{\xi_{CR}}{0.1}\right) \left(\frac{M_{ej}}{M_{\odot}}\right)^{-2/3} \left(\frac{E_{SN}}{10^{51} erg}\right) \left(\frac{n_{ISM}}{cm^{-3}}\right)^{1/6} PeV$$

✓ Type II SN core collapse in its own wind

$$E_{max}^{p} = 0.1 \left(\frac{\xi_{CR}}{0.1}\right) \left(\frac{M_{ej}}{M_{\odot}}\right)^{-1} \left(\frac{\dot{M}}{10^{-5} M_{\odot} yr^{-1}}\right)^{1/2} \left(\frac{V_{w}}{10 km s^{-1}}\right) PeV$$

Core Collapse Red Super Giant

- Transition between
 Ejecta Dominated and
 Sedov-Taylor phases
- ✓ RSG mass loss rate $\dot{M} = 10^{-4} M_{\odot} \text{ yr}^{-1}$
- CR acceleration efficiency $\xi = 0.1$
- ✓ Small rate $\sim 10^{-4} yr^{-1}$

Galactic CR acceleration

✓ In the framework of DSA in SNRs the maximum attainable energy seems somewhat lower than needed. Extreme conditions are needed to reach PeV energies.

Galactic Cosmic Rays – The knee structure

YAC1-Tibet and Argo-YBJ

- ✓ Knee in the all-particle spectrum $\sim 2 \text{ PeV}$
- ✓ Knee in the light component $\sim 0.1 \text{ PeV}$

W.D. Apel et al. (2013)

Kascade and Kascade-Grande

- ✓ Knee in the all-particle spectrum ~ 2 PeV
- ✓ Knee in the heavy component ~80 PeV
- ✓ "Recovery" in the light component ~ 100 PeV
- The position of the p+He knee is not clearly determined, discrepancies among experiments (high vs low altitudes? Di Sciascio talk, this conference)
- Uncertainties in the hadronic interaction models
- ✓ Uncertainty in the maximum acceleration energy of galactic CR.

<u> Ultra High Energy Cosmic Rays – Composition</u>

Mixed Composition

At the lowest energies $\sim 3 \times 10^{17} \ eV$ an increasing light component till $\sim 3 \times 10^{18} \ eV$. At larger energies, the composition turns heavier.

Uncertainties due to the hadronic interaction model assumed.

Auger Collaboration (2019)

Caveats on UHE nuclei

Composition

It is impossible to observe at the Earth a pure heavy nuclei spectrum, even if sources inject only heavy nuclei of a fixed specie at the Earth we will observe all secondaries (protons too) produced by photo-disintegration.

Critical Lorentz factor

The critical Lorentz factor fixes the scale at which photo-disintegration becomes relevant, for heavy nuclei it is almost independent of the nuclei specie

$$\beta_{e^+e^-}^A(\Gamma, t) + H_0(t) = \beta_{dis}^{\Gamma}(A, t)$$

$$E_{cut}(A) = Am_N \Gamma_c$$

$$\Gamma_c \simeq 2 \times 10^9$$

$$E_{cut}(A) = Am_N \Gamma_c$$

$$\Gamma_c \simeq 2 \times 10^9$$

Injection of nuclei: flat vs steep

10¹⁹

E (eV)

10¹⁸

The combined effect of nuclei energy losses, mainly photo-disintegration, and injection implies that a steep injection increases the low energy weight of the mass composition

10¹⁸

10¹⁹

E (eV)

10²⁰

10²¹

10²⁰

The effect of an Intergalactic Magnetic Field (IMF) can mitigate the conclusion on flat spectra allowing for steeper spectra $\gamma \approx 2$.

What we can learn from Auger data

Auger chemical composition can be reproduced only assuming a very flat injection of primary nuclei

$$\gamma_g = 1.0 \div 1.5$$

$$\mathcal{L}_0 = n_{UHE} L_{UHE} \simeq 10^{44} \frac{\text{erg}}{\text{Mpc}^3 \text{y}}$$

with a certain level of degeneracy in terms of the nuclei species injected

Extra Galactic Nuclei and Galactic light elements

An additional galactic component can fill the gap in the spectrum.

Composition: mixture of 80% p and 20% He to reproduce Auger observations.

Problems with DSA acceleration and anisotropy observations.

Different Classes of Extra Galactic Sources

E (eV)

Transition at the ankle

- Galactic light component between 0.1 EeV<E< 1 EeV.
- Difficult to reconcile with anisotropy and mass composition observations. (For a possible model see Farrar talk, this conference)
- Difficult to reconcile with the standard model of DSA.

Transition at the II knee

Different injection light/heavy (steep/flat) (Two classes extragalactic sources and/or specific dynamics at the source).

CNO

10²⁰

- Compatible with Kascade-Grande observations.
- Not too demanding respect to the standard model of DSA.