Gamma-ray observations above 100 TeV

Sergey Troitsky

(INR RAS, Moscow)

Cosmic rays and neutrinos in the multimessenger era, APC Paris, December 9, 2020

Acknowledgements

Amid Nayerhoda

Zhen Cao

Kazumasa Kawata

Pravata Kumar Mohanty

...for discussing the present status of these experiments

©TAIGA

many INR colleagues

Leonid Kuzmichev

This work is supported by the Ministry of science and higher education of the Russian Federation under the contract # 075-15-2020-778 in the framework of the Large scientific projects program within the national project "Science".

Scope and plan

Gamma-ray astronomy above 100 TeV: why, how, where?

*Disclaimer: LHAASO – see Zhen's talk future – see Felix's talk

- ➤ Introduction: a very special band in astronomy pair production and cascades
- Scientific tasks cosmic-ray acceleration, HE neutrino diagnostics, UHECR diagnostics, search for new physics
- Methods extensive air showers, gamma-hadron separation
- Instruments
 present-day: HAWC, Tibet ASγ+MD, GRAPES-3, Carpet-2, TAIGA, LHAASO, Auger, TA
- First results

 multimessenger alerts, point sources, Galactic plane, isotropic background

A very special band: pair production

Pair production on background radiation Nikishov 1962

pair-production cross section (PP):

A very special band: fate of E>100 TeV photons

A very special band: "intrinsically multimessenger"

Scope and plan

Gamma-ray astronomy above 100 TeV: why, how, where?

*Disclaimer: LHAASO – see Zhen's talk future – see Felix's talk

- ➤ Introduction: a very special band in astronomy pair production and cascades
- Scientific tasks cosmic-ray acceleration, HE neutrino diagnostics, UHECR diagnostics, search for new physics
- Methods extensive air showers, gamma-hadron separation
- Instruments
 present-day: HAWC, Tibet ASγ+MD, GRAPES-3, Carpet-2, TAIGA, LHAASO, Auger, TA
- First results

 multimessenger alerts, point sources, Galactic plane, isotropic background

Scientific tasks

- cosmic-ray acceleration (covered by other talks) cosmic rays at 10¹⁷-10¹⁸ eV – Galactic or not?
- high-energy neutrino diagnostics contribution of Galactic sources around 100 TeV?
- UHECR diagnostics cosmogenic photons as a tool to determine primary composition and source distribution
- New physics searches
 Lorentz-invariance tests, axion-like particles and (super)heavy dark matter

High-energy neutrino diagnostics

- cascade/track tension suggests two components different energy ranges probed Palladino&Vissani 2016, ...
- "track spectrum" explained by radio blazars

HE+extrapolation to ~10 TeV Plavin et al. 2020

isotropic Galactic?

subdominant disk component? conventional "PeVatrons" and diffuse Galactic-plane

IceCube 2020

Log₁₀ E_{min}/eV

Kachelriess et al.

2018

disk or

UHECR diagnostics

- ➤ large uncertainties in primary composition hadronic interaction models, anisotropy of composition etc.
- ➤ composition important for interpretation which sources? GZK or Emax? nearby cosmic accelerators e.g. Cen A?...
- cosmogenic photons as a tool observational: largely independent on interaction-model uncertainties

New-physics searches: tests of Lorentz invariance

 shift of the pair-production threshold:
 100-TeV photons from distant sources (depending on the LIV pattern)

Lang et al. 2019, 2020

- photon decay allowed
- simultaneous photon arrival (but astrophysical assumptions...)
- air-shower suppression! Vankov, Stanev 2002 Rubtsov, Satunin, Sibiryakov 2012, 2017

Even a single event gives constraints!

New-physics searches: axion-like particles diminish pair-production attenuation

Supports the axion-photon mixing in large-scale structure filaments

Fairbairn, Rashba, ST 2009

Blue: BL Lacs correlated with HiRes cosmic rays, E>10¹⁹ eV

4.1 Gorbunov et al. 2004; HiRes Collaboration 2005

"anomalous" gamma-ray blazars, E>100 GeV

Korochkin, Rubtsov, ST 2019

Black: VHE GRB (not in the statistical analysis)

HESS 2020, MAGIC 2020

Shadow: weighted density of nearby galaxies 2MRS 2019

Red:

New-physics searches: (super)heavy dark matter

Kuzmin, Rubakov 1997 Berezinsky, Kachelriess, Vilenkin 1997

Photons give the strongest constraints, even for leptonic decay channels!

- Kachelriess, Kalashev, Kuznetsov 2018
- diffuse halo emission
- dwarf galaxies

Scope and plan

Gamma-ray astronomy above 100 TeV: why, how, where?

*Disclaimer: LHAASO – see Zhen's talk future – see Felix's talk

- ➤ Introduction: a very special band in astronomy pair production and cascades
- Scientific tasks cosmic-ray acceleration, HE neutrino diagnostics, UHECR diagnostics, search for new physics
- Methods extensive air showers, gamma-hadron separation
- Instruments
 present-day: HAWC, Tibet ASγ+MD, GRAPES-3, Carpet-2, TAIGA, LHAASO, Auger, TA
- First results

 multimessenger alerts, point sources, Galactic plane, isotropic background

Methods: extensive air showers

- energy determination
 - different for primary photons and cosmic rays, even for "calorimetric" methods
- flux, not fraction!
 - electromagnetic showers have lower modelling uncertainties
 - energy scale difference uncertain in the $I_{\gamma}/I_{
 m CR}$ denominator
- gamma-hadron separation by task
 - directional+temporal searches (flare alerts) easy (very low background)
 even a single event gives a signal!
 - point sources somewhat easy (low background)
 - extended sources (Galactic plane) harder, depends on the template
 - isotropic diffuse flux very hard, small signal on top of large background

Methods: gamma-hadron separation

general: gamma-induced showers are poor of muons and develop slowly

method	technique	drawbacks
muons, direct	shielded vs. unshielded detectors	UHECR modelling, chemical composition, penetrating hadrons
muons, indirect	time profile of the waveform, signal fluctuations	UHECR modelling, chemical composition, large event-by-event fluctuations
Xmax, direct	fluorescent detectors	low exposure, large event-by-event fluctuations
Xmax, indirect	shower age, shape of the front	low separating power
combinations	machine learning	trust to MC in every detail?

Scope and plan

Gamma-ray astronomy above 100 TeV: why, how, where?

*Disclaimer: LHAASO – see Zhen's talk future – see Felix's talk

- ➤ Introduction: a very special band in astronomy pair production and cascades
- Scientific tasks cosmic-ray acceleration, HE neutrino diagnostics, UHECR diagnostics, search for new physics
- Methods extensive air showers, gamma-hadron separation
- Instruments present-day: HAWC, Tibet ASγ+MD, GRAPES-3, Carpet-2, TAIGA, LHAASO, Auger, TA
- First results

 multimessenger alerts, point sources, Galactic plane, isotropic background

Instruments

currently taking data

HAWC LHAASO Tibet AS γ +MD GRAPES-3

Pierre Auger Telescope Array Carpet-2 TAIGA

Scope and plan

Gamma-ray astronomy above 100 TeV: why, how, where?

*Disclaimer: LHAASO – see Zhen's talk future – see Felix's talk

- Introduction: a very special band in astronomy pair production and cascades
- Scientific tasks cosmic-ray acceleration, HE neutrino diagnostics, UHECR diagnostics, search for new physics
- Methods extensive air showers, gamma-hadron separation
- Instruments
 present-day: HAWC, Tibet ASγ+MD, GRAPES-3, Carpet-2, TAIGA, LHAASO, Auger, TA
- First results

 multimessenger alerts, point sources, Galactic plane, isotropic background

First results: alerts

- ➤ IceCube HE neutrino alerts "followed" by HAWC and Carpet-2
- upper limits start to probe flares of Galactic sources
- > a recent example: the Cygnus Cocoon neutrino event, Nov 20
 - IceCube 201120A, "BRONZE" alert, 154 TeV
 - naïve fluence estimate ~3 GeV/cm²
 - poor angular reconstruction, consistent with the Cyg Cocoon
 - star-forming region, a possible HE neutrino source, 1.4 kpc

Yoast-Hull et al. (2017), Bykov et al. (2020)

Editors' Suggestion

Featured in Physics

Multiple Galactic Sources with Emission Above 56 TeV Detected by HAWC

THE ASTROPHYSICAL JOURNAL, 881:134 (13pp), 2019 August 20 © 2019. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/ab2f7d

____ Crab Neb

PHYSICAL REVIEW LETTERS 123, 051101 (2019)

Editors' Suggestion

Featured in Physics

First Detection of Photons with Energy beyond 100 TeV from an Astrophysical Source

3 sources above 100 TeV

HAWC 2019, Crab

Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC

- observations used already for source astrophysics and for Lorentz-invariance tests
- + LHAASO results intriguing but unpublished (see Zhen's talk)

First results: point sources

Only upper limits above 10¹⁷ eV published (so far)

First results: Galactic plane

different experiments see different parts, hard to compare

First results: isotropic diffuse flux

Only upper limits above 100 TeV published (so far)

First results: isotropic diffuse flux

A long way to decisive conclusions at UHECR, but HE neutrino diagnostics next door

Conclusions:

previously underestimated, but now under intense development (thanks to questions asked by IceCube, Auger, TA...)

Stay tuned!

BACKUP

Gamma reconstructed energies

