High energy interactions of CRs: a view on the UHECR composition

Sergey Ostapchenko SMP MSU

CRs & Neutrinos in the Multi-Messenger Ere Haris, December 07-11, 2020 "If you see a tiger in a cage labeled 'elephant', don't trust your eyes!" Kozma Prutkov (19th century)

A B > A B >

"If you see a tiger in a cage labeled 'elephant', don't trust your eyes!"

Kozma Prutkov (19th century)

Disclaimer

• The most of what follows has been discussed previously

"If you see a tiger in a cage labeled 'elephant', don't trust your eyes!"

Kozma Prutkov (19th century)

Disclaimer

- The most of what follows has been discussed previously
- One can't prove that a phenomenological model is correct
- Therefore, I'll concentrate on things which are either obviously wrong or likely wrong...

High energy CR studies: extensive air shower techniques

CR composition studies - most dependent on interaction models

• e.g. predictions for X_{max} : on the properties of the primary particle interaction (σ_{p-air}^{inel} , forward particle spectra)

 $\bullet \ \Rightarrow \mbox{most}$ relevant to LHC studies of pp collisions

- predictions for muon density: on secondary particle interactions (cascade multiplication); mostly on N^{ch}_{π-air}
 - \Rightarrow small potential influence of 'new physics'

Cosmic ray interaction models

QGSJET-II-04 [SO, 2011]

- theoretically most advanced: e.g. microscopic treatment of nonlinear effects (Pomeron-Pomeron interaction diagrams)
- \Rightarrow strong predictive power (minimal number of parameters)

EPOS-LHC [Pierog, Karpenko, Katzy, Yatsenko & Werner, 2015]

- more phenomenological (e.g. parametrized saturation effects)
 - $\bullet \Rightarrow$ larger parameter freedom
- additional theoretical mechanisms (e.g. energy-momentum sharing at the amplitude level, hydrodynamics for final states)
- generally better description of existing data (e.g. pt spectra)
- SIBYLL-2.3 [Riehn, Engel, Fedynitch, Gaisser & Stanev, 2015]
 - relatively simple ('minijet' approach)
 - differs from QGSJET-II & EPOS in many important aspects
 - has similarities to models used at LHC (e.g. PYTHIA)

Of highest importance: measurements of $\sigma_{pp}^{ m tot/el}$ at LHC

• allow one to calculate $\sigma_{p/A-\text{air}}^{\text{inel}}$ (Glauber-Gribov approach) • $\sigma_{p/A-\text{air}}^{\text{inel}} \Rightarrow$ position of 1st interaction of the primary particle • \Rightarrow impacts all EAS observables, notably, X_{max}

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Of highest importance: measurements of $\sigma_{pp}^{ m tot/el}$ at LHC

• allow one to calculate $\sigma_{p/A-air}^{inel}$ (Glauber-Gribov approach) • $\sigma_{p/A-air}^{inel} \Rightarrow$ position of 1st interaction of the primary particle

• \Rightarrow impacts all EAS observables, notably, $X_{
m max}$

- e.g. depends on the transverse profile of the proton
- it is also correlated with the treatment of diffraction ('inelastic screening' effect)
- yet the decisive effect comes from σ_{pp}^{inel}

Of highest importance: measurements of $\sigma_{pp}^{ m tot/el}$ at LHC

- \bullet allow one to calculate $\sigma_{\it p/A-air}^{\rm inel}$ (Glauber-Gribov approach)
- $\sigma_{p/A-air}^{inel} \Rightarrow$ position of 1st interaction of the primary particle
 - \Rightarrow impacts all EAS observables, notably, $X_{
 m max}$

Model predictions for X_{max} : huge differences

Predicted X_{max} depends also on the rate of inelastic diffraction & the 'inelasticity' $K_{p-\text{air}}^{\text{inel}}$; also on the treatment of π – air collisions

- inelastic diffraction impacts model predictions for X_{max}
 - diffractive collisions are 'less inelastic'

• inelastic diffraction impacts model predictions for X_{max}

- diffractive collisions are 'less inelastic'
- e.g. in target diffraction at high energies (rhs above), CR proton looses a tiny portion of its energy

• inelastic diffraction impacts model predictions for X_{max}

- diffractive collisions are 'less inelastic'
- e.g. in target diffraction at high energies (rhs above), CR proton looses a tiny portion of its energy

So far: tension between CMS & TOTEM concerning σ_{pp}^{SD}

	TOTEM	CMS
M_X range, GeV	7 - 350	12 - 394
$\sigma_{pp}^{\mathrm{SD}}(\Delta M_X)$, mb	$\simeq 3.3$	4.3 ± 0.6
$\frac{d\sigma_{pp}^{\text{SD}}}{dy_{\text{gap}}}$, mb	0.42	0.62

• CMS measured $\simeq 50\%$ higher diffraction rate than TOTEM!

QGSJET-II-04 vr	s. TOTEM: a	agreement o	f M_X -sh	ape and	SD-rate
M_X range, GeV	< 3.4	3.4-1100	3.4-7	7-350	350-1100
TOTEM	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$
QGSJET-II-04	3.9	7.2	1.9	3.9	1.5
• rates of SD in QGSJET-II-04: $10 - 20\%$ above TOTEM					

QGSJET-II-04 vrs. TOTEM: agreement of M_X -shape and SD-rate

M_X range, GeV	< 3.4	3.4 - 1100	3.4-7	7 - 350	350 - 1100
TOTEM	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$
QGSJET-II-04	3.9	7.2	1.9	3.9	1.5

• rates of SD in QGSJET-II-04: 10 - 20% above TOTEM

Predicted M_X -shape agrees with SD (CMS) & rap-gaps (ATLAS)

200

Impact of uncertainties of $\sigma_{pp}^{ m SD}$ [SO, PRD 89 (2014) 074009]

Two alternative model versions (tunes): SD+ & SD-

- SD+: higher diffraction rate to approach CMS results
- SD-: smaller low mass diffraction (by 30%) to fit TOTEM
- similar $\sigma_{pp}^{tot/el}$ & central particle production in both cases

Impact of uncertainties of $\sigma_{pp}^{ m SD}$ [SO, PRD 89 (2014) 074009]

Two alternative model versions (tunes): SD+ & SD-

- SD+: higher diffraction rate to approach CMS results
- SD-: smaller low mass diffraction (by 30%) to fit TOTEM
- similar $\sigma_{\it pp}^{\it tot/el}$ & central particle production in both cases

smaller diffraction rate:

- smaller inelastic screening \Rightarrow larger σ_{p-air}^{inel}
- smaller diffraction for *p*-air \Rightarrow larger $K_{p-\text{air}}^{\text{inel}}$, $N_{p-\text{air}}^{\text{ch}}$
- \Rightarrow smaller X_{max} (all effects work in the same direction)

higher diffraction \Rightarrow opposite

Impact on CR composition: interpretation of TA data

• fit TA data by p+Fe CR composition: SD+ & SD- tunes

- good fit quality for both tunes (and for original QGSJET-II-04)
- however: for different CR compositions

Impact on CR composition: interpretation of TA data

• fit TA data by p+Fe CR composition: SD+ & SD- tunes

- good fit quality for both tunes (and for original QGSJET-II-04)
- however: for different CR compositions

• option SD+: pure proton composition excluded

ATLAS measurement (Roman Pots) of $d\sigma_{pp}^{SD}/dt$ vrs. QGSJET-II-04

- agrees perfectly with QGSJET-II-04
- ⇒ consistent with preliminary results of TOTEM
- ⇒ light UHECR composition favored by LHC results on diffraction (using QGSJET-II-04)

Inelastic diffraction: moment of truth

ATLAS measurement (Roman Pots) of $d\sigma_{pp}^{SD}/dt$ vrs. QGSJET-II-04

- agrees perfectly with QGSJET-II-04
- \Rightarrow consistent with preliminary results of TOTEM
- → light UHECR composition favored by LHC results on diffraction (using QGSJET-II-04)

Other models overestimate high mass (large $\overline{M_X}$) diffraction

M_X range, GeV	< 3.4	3.4 - 1100	3.4-7	7 - 350	350-1100
TOTEM	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$
EPOS-LHC	4.0	7.1	1.0	3.9	2.2
SIBYLL 2.3	1.6	11.8	1.1	6.7	4.0

▲口 > ▲団 > ▲目 > ▲目 > ▲目 > ▲ ○ ◆ ○ ◆

PAO data on X_{max} & $\sigma(X_{\text{max}})$: a self-consistent interpretation?

PAO data on X_{max} & $\sigma(X_{\text{max}})$: a self-consistent interpretation?

PAO data on X_{max} & $\sigma(X_{\text{max}})$: a self-consistent interpretation?

Nuclear fragmentation & $\sigma(X_{\text{max}})$ [SO, arXiv:1612.09461]

EPOS-LHC: much smaller $\sigma(X_{max})$ for primary nuclei

- = main reason for the better agreement with PAO data
- why $\sigma(X_{max})|_{C}$ in EPOS is almost as small as $\sigma(X_{max})|_{Fe}$ in QGSJET-II & SIBYLL?

Image: A mathematical states of the state

Cross check with SIBYLL & QGSJET-II: two extreme scenarios

- Complete break up of nuclear spectator part (into separate nucleons)
 ⇒ smallest RMS(X_{max})
- o break up (single secondary fragment)
 ⇒ largest RMS(X_{max})

Cross check with SIBYLL & QGSJET-II: two extreme scenarios

- complete break up of nuclear spectator part (into separate nucleons)
 ⇒ smallest RMS(X_{max})
- o break up (single secondary fragment)
 ⇒ largest RMS(X_{max})
 - EPOS results: close to the full break up option

Cross check with SIBYLL & QGSJET-II: two extreme scenarios

- complete break up of nuclear spectator part (into separate nucleons)
 ⇒ smallest RMS(X_{max})
- o break up (single secondary fragment)
 ⇒ largest RMS(X_{max})
 - EPOS results: close to the full break up option

• reason: incorrect matching to the nuclear fragmentation procedure in CORSIKA (double count of knock-out nucleons) • \Rightarrow small $\sigma(X_{max})$ of EPOS-LHC – purely artificial

Cross check with SIBYLL & QGSJET-II: two extreme scenarios

- Complete break up of nuclear spectator part (into separate nucleons)
 ⇒ smallest RMS(X_{max})
- o break up (single secondary fragment)
 ⇒ largest RMS(X_{max})
 - EPOS results: close to the full break up option

- reason: incorrect matching to the nuclear fragmentation procedure in CORSIKA (double count of knock-out nucleons) • \Rightarrow small $\sigma(X_{max})$ of EPOS-LHC – purely artificial
- \Rightarrow consistent interpretation of PAO data on $X_{\text{max}} \& \sigma(X_{\text{max}})$ requires large predicted X_{max} (like in SIBYLL 2.3)

SIBYLL (also PYTHIA & other models used at colliders): multiple scattering mostly affects central (low x) production

- multiple scattering has small impact on forward spectra
 - new sub-cascades emerge at small x $(G(x,q^2) \propto 1/x)$
- \Rightarrow Feynman scaling for forward production

SIBYLL (also PYTHIA & other models used at colliders): multiple scattering mostly affects central (low x) production

- multiple scattering has small impact on forward spectra
 - new sub-cascades emerge at small x $\left(G(x,q^2) \propto 1/x\right)$
- $\bullet \ \Rightarrow \ {\sf Feynman \ scaling \ for \ forward \ production}$
- forward & central production: decoupled from each other

SIBYLL (also PYTHIA & other models used at colliders): multiple scattering mostly affects central (low x) production

- multiple scattering has small impact on forward spectra
 - new sub-cascades emerge at small x $(G(x,q^2) \propto 1/x)$
- $\bullet\,\Rightarrow\,$ Feynman scaling for forward production
- forward & central production: decoupled from each other

EPOS & QGSJET(-II): multiple scattering starts already at large x

 → softer forward spectra (energy sharing between constituent partons)

SIBYLL (also PYTHIA & other models used at colliders): multiple scattering mostly affects central (low x) production

- multiple scattering has small impact on forward spectra
 - new sub-cascades emerge at small x $(G(x,q^2) \propto 1/x)$
- $\bullet \ \Rightarrow \ \mathsf{Feynman} \ \mathsf{scaling} \ \mathsf{for} \ \mathsf{forward} \ \mathsf{production}$
- forward & central production: decoupled from each other

EPOS & QGSJET(-II): multiple scattering starts already at large x

- ⇒ softer forward spectra (energy sharing between constituent partons)
- forward & central particle production: strongly correlated
 - e.g. more activity in central detectors
 ⇒ softer forward spectra

Treatment of multiple scattering & s-dependence of K_{p-air}^{inel}

Of importance for cosmic ray studies: \sqrt{s} -dependence of K_{pp}^{inel}

Of importance for cosmic ray studies: \sqrt{s} -dependence of K_{pp}^{inel}

- SIBYLL 2.3: weak energy dependence of K_{pp}^{inel} (for increasing \sqrt{s} , mostly rise of central production)
- smaller K^{inel} ⇒ stronger
 'leading particle' effect
- ⇒ slower development of CR-induced air showers

Treatment of multiple scattering & s-dependence of K_{p-ai}^{inel}

Of importance for cosmic ray studies: \sqrt{s} -dependence of K_{pp}^{inel}

- SIBYLL 2.3: weak energy dependence of K^{inel}_{pp} (for increasing √s, mostly rise of central production)
- smaller $K^{\text{inel}} \Rightarrow$ stronger 'leading particle' effect
- ⇒ slower development of CR-induced air showers
- SIBYLL 2.3: slower energy rise of K^{inel}_{p-air}
 - \Rightarrow larger elongation rate
 - \Rightarrow deeper X_{\max} at the highest energies

Treatment of multiple scattering & s-dependence of K_{p-air}^{inel}

Treatment of multiple scattering & s-dependence of K_{p-air}^{inel}

Now measured: correlation of forward energy (in CASTOR) with central activity (N of charged particle tracks) in CMS

Treatment of multiple scattering & s-dependence of K_{p-ain}^{inel}

Now measured: correlation of forward energy (in CASTOR) with central activity (N of charged particle tracks) in CMS

- \Rightarrow only first 3 bins relevant (binning too crude)
- NB: 1st bin may be biased by experimental event selection
 - \Rightarrow no decisive discrimination

Treatment of multiple scattering & s-dependence of K_{p-ain}^{inel}

Now measured: correlation of forward energy (in CASTOR) with central activity (N of charged particle tracks) in CMS

- \Rightarrow only first 3 bins relevant (binning too crude)
- NB: 1st bin may be biased by experimental event selection
 - $\bullet \ \Rightarrow \ \text{no decisive discrimination}$
- SIBYLL 2.3: correlation too weak compared to data
 - approach disfavored (X_{max} overestimated)?

Treatment of multiple scattering & s-dependence of K_{p-ain}^{inel}

Now measured: correlation of forward energy (in CASTOR) with central activity (N of charged particle tracks) in CMS

- \Rightarrow only first 3 bins relevant (binning too crude)
- NB: 1st bin may be biased by experimental event selection
 - $\bullet \ \Rightarrow \ \text{no decisive discrimination}$
- SIBYLL 2.3: correlation too weak compared to data
 - approach disfavored (X_{max} overestimated)?
- QGSJET-II-04: correlation may be too strong compared to data?
 - X_{max} underestimated?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

We are back to Zeno's paradox...

- change a model to modify X_{max} prediction:
 - X^{μ}_{\max} will move in the same direction!
- or vice versa

- changing the treatment of p air collisions?
 - $\sigma_{\mathit{p-air}}^{inel}$ little freedom in view of LHC data
 - same for the rate of diffractive collisions
 - treatment of forward hadron production (\Rightarrow impact on $K_{p-\text{air}}^{\text{inel}}$) - some freedom left (see the SIBYLL/QGSJET-II difference)
 - already disfavored by 'forward-central' correlation studies?

- changing the treatment of p air collisions?
 - σ_{p-air}^{inel} little freedom in view of LHC data
 - same for the rate of diffractive collisions
 - treatment of forward hadron production (\Rightarrow impact on $K_{p-\text{air}}^{\text{inel}}$) - some freedom left (see the SIBYLL/QGSJET-II difference)
 - already disfavored by 'forward-central' correlation studies?
- this impacts only the initial stage of EAS development
 - further cascade development: dominated by pion-air collisions

- changing the treatment of p air collisions?
 - σ_{p-air}^{inel} little freedom in view of LHC data
 - same for the rate of diffractive collisions
 - treatment of forward hadron production (\Rightarrow impact on $K_{p-\text{air}}^{\text{inel}}$) - some freedom left (see the SIBYLL/QGSJET-II difference)
 - already disfavored by 'forward-central' correlation studies?
- this impacts only the initial stage of EAS development
 - further cascade development: dominated by pion-air collisions
- \Rightarrow parallel up/down shift of the cascade profile (same shape) • \Rightarrow (nearly) same effect on X_{max} and X_{max}^{μ}

- changing the treatment of p air collisions?
- this impacts only the initial stage of EAS development
- \Rightarrow parallel up/down shift of the cascade profile (same shape) • \Rightarrow (nearly) same effect on X_{max} and X_{max}^{μ}

Changing the treatment of π – air collisions ('Achilles & Tortoise')

- e.g., $\sigma_{\pi-air}^{inel}$, $\sigma_{\pi-air}^{diffr}$, $K_{\pi-air}^{inel}$
 - making special assumptions concerning the pion structure

Changing the treatment of π – air collisions ('Achilles & Tortoise')

- e.g., $\sigma_{\pi-\mathrm{air}}^{\mathrm{inel}}$, $\sigma_{\pi-\mathrm{air}}^{\mathrm{diffr}}$, $K_{\pi-\mathrm{air}}^{\mathrm{inel}}$
 - making special assumptions concerning the pion structure
- affects every step in the multi-step hadron cascade
 - \Rightarrow cumulative effect on X_{\max}^{μ}

Changing the treatment of π – air collisions ('Achilles & Tortoise')

- e.g., $\sigma_{\pi-\mathrm{air}}^{\mathrm{inel}}$, $\sigma_{\pi-\mathrm{air}}^{\mathrm{diffr}}$, $K_{\pi-\mathrm{air}}^{\mathrm{inel}}$
 - making special assumptions concerning the pion structure
- affects every step in the multi-step hadron cascade
 - \Rightarrow cumulative effect on X_{\max}^{μ}
- but: only the first few steps in the cascade impact X_{max}
 - after few steps, most of energy channelled into e/m cascades
 - \Rightarrow much weaker effect on X_{max}

() < </p>

臣

E.g., employing the old QGSJET model for π – air collisions

• \Rightarrow (almost) pure proton composition for UHECRs

NB: rather an indication of the tendency, not a solution

 old QGSJET – outdated; known to overestimate particle production in π – air collisions at low energies

Current situation

- data on X_{max} favor a light UHECR composition (for QGSJET-II)
- data on X_{\max}^{μ} : close to model results for primary iron (at best)

□ > < E >

Summary on X_{\max} & X_{\max}^{μ}

Current situation

- data on X_{max} favor a light UHECR composition (for QGSJET-II)
- data on X_{\max}^{μ} : close to model results for primary iron (at best)

Changing the treatment of p - air interactions?

- parallel up/down shift of the cascade profile
 - \Rightarrow same effect on X_{\max} and X_{\max}^{μ}
- \Rightarrow no way to 'marry' $X_{\max} \& X_{\max}^{\mu}$ data composition-wise

Summary on $X_{\max} \& X_{\max}^{\mu}$

Current situation

- data on X_{max} favor a light UHECR composition (for QGSJET-II)
- data on X_{\max}^{μ} : close to model results for primary iron (at best)

Changing the treatment of π – air interactions?

- strong effect on X^μ_{max} but minor shift of X_{max}
- \Rightarrow self-consistent interpretation of the data on $X_{\text{max}} \& X_{\text{max}}^{\mu}$

Summary on $X_{\max} \& X_{\max}^{\mu}$

Current situation

- data on X_{max} favor a light UHECR composition (for QGSJET-II)
- data on X_{max}^{μ} : close to model results for primary iron (at best)

Changing the treatment of π – air interactions?

- strong effect on X^µ_{max}
 but minor shift of X_{max}
- \Rightarrow self-consistent interpretation of the data on $X_{\text{max}} \& X_{\text{max}}^{\mu}$
- but: very light primary composition?!

Interpretation of TA data on X_{max}-distributions, using QGSJET-II-04 (adjusted to LHC results on diffraction):

<ロ> (四) (四) (三) (三)

• \Rightarrow very light UHECR composition

- Interpretation of TA data on X_{max}-distributions, using QGSJET-II-04 (adjusted to LHC results on diffraction):
 - $\bullet \ \Rightarrow \text{very light UHECR composition}$
- **2** Interpretation of PAO data on X_{max} & $\sigma(X_{\text{max}})$:
 - possible only with SIBYLL 2.3 (smaller $K_{p-\text{air}}^{\text{inel}} \Rightarrow \text{larger } X_{\text{max}}$)
 - \Rightarrow moderately heavy UHECR composition
 - disfavored by 'forward-central' correlation studies?

- Interpretation of TA data on X_{max}-distributions, using QGSJET-II-04 (adjusted to LHC results on diffraction):
 - $\bullet \ \Rightarrow \text{very light UHECR composition}$
- **2** Interpretation of PAO data on X_{max} & $\sigma(X_{\text{max}})$:
 - possible only with SIBYLL 2.3 (smaller $K_{p-\text{air}}^{\text{inel}} \Rightarrow \text{larger } X_{\text{max}}$)
 - $\bullet \ \Rightarrow \ \mathsf{moderately} \ \mathsf{heavy} \ \mathsf{UHECR} \ \mathsf{composition}$
 - disfavored by 'forward-central' correlation studies?
- Solution Interpretation of PAO data on $X_{\text{max}} \& X_{\text{max}}^{\mu}$?
 - \Rightarrow pushes one towards a very light UHECR composition

- Interpretation of TA data on X_{max}-distributions, using QGSJET-II-04 (adjusted to LHC results on diffraction):
 - $\bullet \ \Rightarrow \text{very light UHECR composition}$
- **2** Interpretation of PAO data on X_{max} & $\sigma(X_{\text{max}})$:
 - possible only with SIBYLL 2.3 (smaller $K_{p-\text{air}}^{\text{inel}} \Rightarrow \text{larger } X_{\text{max}}$)
 - \Rightarrow moderately heavy UHECR composition
 - disfavored by 'forward-central' correlation studies?
- Solution Interpretation of PAO data on $X_{\text{max}} \& X_{\text{max}}^{\mu}$?
 - $\bullet \Rightarrow$ pushes one towards a very light UHECR composition
 - requires radical changes of the treatment of π -air interactions
 - NB: interpretation of TA data will remain (almost) inaffected

- Interpretation of TA data on X_{max}-distributions, using QGSJET-II-04 (adjusted to LHC results on diffraction):
 - $\bullet \ \Rightarrow \text{very light UHECR composition}$
- 2 Interpretation of PAO data on X_{max} & $\sigma(X_{\text{max}})$:
 - possible only with SIBYLL 2.3 (smaller $K_{p-\text{air}}^{\text{inel}} \Rightarrow \text{larger } X_{\text{max}}$)
 - $\bullet \ \Rightarrow \ \mathsf{moderately} \ \mathsf{heavy} \ \mathsf{UHECR} \ \mathsf{composition}$
 - disfavored by 'forward-central' correlation studies?
- Solution Interpretation of PAO data on $X_{\text{max}} \& X_{\text{max}}^{\mu}$?
 - $\bullet\,\Rightarrow\,$ pushes one towards a very light UHECR composition
 - requires radical changes of the treatment of π -air interactions
 - NB: interpretation of TA data will remain (almost) inaffected

comments on the PAO 'muon excess': backup slides

Extra slides

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Few comments on the PAO 'muon excess'

PAO observed higher EAS muon content than predicted by models

Can muon excess be produced by 1-2 cascade steps?

• e.g. if we double N^{ch} for the 1st interaction?

• < 10% increase for N_{μ} ! [SO, talk at C2CR-2005]

to get, say, a factor 2 enhancement:
 N_{ch} should rise by an order of magnitude

Potential 'new physics' can be discriminated by fluctuations of muon density [SO, arXiv:1612.09461]

• \Rightarrow interactions dominated by peripheral ($b \ge 2$ fm) collisions

Potential 'new physics' can be discriminated by fluctuations of muon density [SO, arXiv:1612.09461]

• \Rightarrow interactions dominated by peripheral ($b \ge 2$ fm) collisions

- at large *b*: low parton density
 - \Rightarrow not suitable for new physics to emerge

Potential 'new physics' can be discriminated by fluctuations of muon density [SO, arXiv:1612.09461]

Assume new physics to emerge in 10% of most central collisions

• and result in EAS with a factor of 10 higher muon density... • \Rightarrow 90% muon excess ($\langle \rho_{\mu} \rangle = 0.1 * 10 \rho_{\mu}^{(0)} + 0.9 * \rho_{\mu}^{(0)} = 1.9 \rho_{\mu}^{(0)}$)
Potential 'new physics' can be discriminated by fluctuations of muon density [SO, arXiv:1612.09461]

Assume new physics to emerge in 10% of most central collisions

- and result in EAS with a factor of 10 higher muon density...
 - \Rightarrow 90% muon excess ($\langle \rho_{\mu} \rangle = 0.1 * 10 \rho_{\mu}^{(0)} + 0.9 * \rho_{\mu}^{(0)} = 1.9 \rho_{\mu}^{(0)}$)
- \Rightarrow large fluctuations of muon density: $\sigma_{\rho_{\mu}}/\rho_{\mu}\simeq 100\%$
- \Rightarrow can be easily discriminated in PAO data (for usual EAS: $\sigma_{\rho_{\mu}}/\rho_{\mu} \simeq 10 \div 15\%$)

Potential 'new physics' can be discriminated by fluctuations of muon density [SO, arXiv:1612.09461]

Assume new physics to emerge in 10% of most central collisions

and result in EAS with a factor of 10 higher muon density...

•
$$\Rightarrow$$
 90% muon excess ($\langle \rho_{\mu} \rangle = 0.1 * 10 \rho_{\mu}^{(0)} + 0.9 * \rho_{\mu}^{(0)} = 1.9 \rho_{\mu}^{(0)}$)

 $\bullet \Rightarrow$ no room for further

speculations

- $\bullet\,\Rightarrow$ large fluctuations of muon density: $\sigma_{\rho_{\mu}}/\rho_{\mu}\simeq 100\%$
- \Rightarrow can be easily discriminated in PAO data (for usual EAS: $\sigma_{\rho_{\mu}}/\rho_{\mu} \simeq 10 \div 15\%$)

- NB: N_µ results from a multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- which π air interactions most important?

- NB: N_µ results from a multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- which π air interactions most important?

•
$$N_{\mu} \propto E_0^{\alpha_{\mu}} = \prod_{i=1}^{\inf(\lg E_0)} 10^{\alpha_{\mu}}$$

• each order of magnitude: factor $10^{\alpha_{\mu}} \simeq 8 \ (\alpha_{\mu} \simeq 0.9)$

- NB: N_µ results from a multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- which π air interactions most important?

•
$$N_{\mu} \propto E_0^{\alpha_{\mu}} = \prod_{i=1}^{\inf(\lg E_0)} 10^{\alpha_{\mu}}$$

- each order of magnitude: factor $10^{\alpha_{\mu}} \simeq 8 \ (\alpha_{\mu} \simeq 0.9)$
- \Rightarrow higher N_{μ} requires to change π – air interactions over a wide energy range

- NB: N_μ results from a multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- which π air interactions most important?

•
$$N_{\mu} \propto E_0^{\alpha_{\mu}} = \prod_{i=1}^{\inf(\lg E_0)} 10^{\alpha_{\mu}}$$

- each order of magnitude: factor $10^{\alpha_{\mu}} \simeq 8 \ (\alpha_{\mu} \simeq 0.9)$
- \Rightarrow higher N_{μ} requires to change π – air interactions over a wide energy range

If 'muon excess' is real: $\alpha_{\mu} \rightarrow \tilde{\alpha}_{\mu} > 1$ between 10^{17} & 10^{19} eV

