

NA4- Proton Radius European Network (PREN)

presented by Randolf Pohl, JGU Mainz, Germany

1 To **stimulate** and support a real **synergy** between all the physicists involved in the world-wide **experimental** and **theoretical** effort from **atomic spectroscopy** and **lepton scattering** in order to fully understand the persistent discrepancies and to come to a statement on the **value of the proton charge radius.**

Plan: How large is the proton, really?

Situation before 2018

Participants from 22 institutions / 11 countries

Theory and Experiment from
Atomic Physics and Lepton Scattering

- 1 PREN Website: https://indico.in2p3.fr/e/PREN
- 2 Workshop Travel Support
 - XIX International Conference on Science, Arts and Culture:
 The Proton Radius

September 15 - 20, 2019 - Veli Lošinj (Croatia) (~30 participants: mostly nuclear physicists)

3 Targeted Workshops / Conventions:

planned for Spring 2020, but Covid-19

new plan: spring 2021

4 Review paper: J.-Ph. Karr, D. Marchand, E. Voutier, "The proton size",

Nature Review Physics Sept. 2020

https://www.nature.com/articles/s42254-020-0229-x

5 Collaboration on systematic effects in hydrogen spectroscopy (MPQ -LKB)

6 ...

PRad: low-Q2 e-p scattering (JLab)

- Precision measurement of the Proton charge radius (PRad):
- Performed in 2016 in Hall B at JLab;
- Published in Nov. 2019 in Nature journal:
 Nature 575, 145 150 (2019).

$$r_p = 0.831 + -0.007 \text{ (stat.)} + 0.012 \text{ (syst.)} \text{ fm}$$

supports a smaller radius.

PRad: low-Q2 e-p scattering (JLab)

- New proposal recently approved by the JLab's PAC48 with an "A" scientific rating to perform new experiment (PRad-II) to improve the measurement accuracy by a factor of 4.
- add tracking detectors (two GEMs or microRwells);
- upgrade HyCal calorimeter to all PbWO₄
 crystals;
- reach $Q^2 = 10^{-5} \text{ GeV/c}^2$ range for the first time;
- improved beamline conditions for less background at very small angles;
- add new scintillator detectors to veto Moller events at very low scattering angles;
- implement new liquid drop target (if possible). 0.78
- Work started on the preparation of this experiment.

PRES: Active TPC at MAMI

- → Hydrogen TPC to be used as an active target
- → Measurements at low momentum transfer: 0.001 0.02 (0.04) GeV²
- → Absolute measurements of $d\sigma/dt$ with an accuracy on a level of ~0.2%
- → Lower radiative corrections compared to measurements with detection of the scattered electron only
- → Further opportunities for form factor measurements for the deuteron and helium isotopes

from V. Sokoyan

world's largest microtron

e, \vec{e} 160-1600 MeV 0-100 μ A

started with 315 MeV in 2020 (Y. Wang *et al.*)

kinematic range,

projected errors

0.0001

with improved systematics

magnetic

spectrometer

MAMI

measurement of proton form factors in H(e,e')p $\rightarrow r_p$

0.99

0.98

0.97

0.96

from
S. Schlimme

point-like
gas jet
target
AG Khoukaz,
Münster

energy recovering linac

e, e ~20-105 MeV $0-\underline{1000} \mu A$

MAGIX

access to very low momentum transfers at the MAGIX experiment, 2022+

 Q^2 [GeV 2]

0.01

Atomic Spectroscopy

CODATA-2018

adopting smaller proton radius

Rp (CODATA-18) = 0.84140 (190) fm Rp (muonic) = 0.84087 (39) fm

correspondingly smaller Rydberg constant

Scintillator (SPS)

⇒ track beam particles

» Low flux (3.5 MHz)

⇒ large acceptance

» Mixed beam

⇒ PID in trigger

MUSE @ PSI Data taking 2021/22

from J. Bernauer

R. Gilman et al., arXiv:1303.2160 (nucl-ex)

Straw-Tube Tracker (STT)

Outlook

- 1 Many more results to come:
 - muonic 4He paper: accepted
 - H(1S-3S) Paper (MPQ): accepted
 - Deuterium, muonic Helium-3
 - 2-photon exchange

-

- 2 PREN Workshop: Spring 2021
- 3 Better understanding of the proton size from all perspectives

Thank You!

- **CEA** Saclay/DRF/Irfu/Département de Physique Nucléaire, France; N. D'Hose,
- **CNRS**: France; D. Marchand (IPN Orsay) and J.-Ph. Karr (LKB, Paris), G. Quéméner (LPC Caen), H. Fonvielle (LPC Clermont-Ferrand),
- **ETH Zurich**, Switzerland; P. Crivelli,
- **Hebrew University**, Jerusalem, Israel; G. Ron,
- JG University Mainz, Germany; M. Ostrick, R. Pohl, M. Vanderhaeghen,
- **JWG University** Frankfürt, Germany; R. Grisenti,
- **Jožef Stefan Institute**, Ljubljana, Slovenia; M. Mihovilovič, S. Sirca,
- **LaserLaB**, Vrije Universiteit, Amsterdam, Netherlands; W. Vassen, K. Eikema,
- **MPQ Garching**, Germany; T.W. Hänsch, Th. Udem, S. Karshenboim,
- Paul-Scherrer-Institut (PSI), Villigen, Switzerland; A. Antognini,
- **Technische University** München, Garching, Germany; S. Paul,
- Universitat Autonoma de Barcelona / IFAE, Spain; A. Pineda,
- University College of London, London, UK; D. Cassidy,
- University of Warsaw, Warszawa, Polska; Krzysztof Pachucki.
- Bogoliubov Laboratory of Theoretical Physics, JINR Dubna, Russia; V. Korobov,
- George Washington University, Washington DC, USA; A. Afanasev,
- Massachusetts Institute of Technology, Cambridge, MA, USA; J. Bernauer,
- North Carolina A&T State University, Greensboro, NC, USA; A. Gasparian,
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA; R. Gilman,
- Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia; A. Vorobyov