

WP 30: JRA12 – Spin for FAIR

Andrea Pesce – IKP-2 (FZJ)

STRONG2020 Annual Meeting – October 14th-15th 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

JRA12 – Spin for FAIR: Motivation

• Development of an efficient method for polarizing antiproton beams at FAIR

JRA12 – Spin for FAIR: Motivation

Development of an efficient method for polarizing antiproton beams at FAIR
 ✓ Spin filtering of protons with transverse polarization performed at COSY

JRA12 – Spin for FAIR: Motivation

Development of an efficient method for polarizing antiproton beams at FAIR
 ✓ Spin filtering of protons with transverse polarization performed at COSY

- •Test with longitudinal polarization needed to complete the measurement
 - Full determination of the p_{bar}- p cross section
 - Experimental Storage Ring at FAIR

T1: Siberian Snake Commissioning

- Installed in COSY @ ANKE place
- First commissioning beam time in March 2020
- Will provide longitudinal polarization at PAX section

T1: Siberian Snake Commissioning

- Injection of a polarized p-beam
- Acceleration@135 MeV (521 MeV/c)
- E-cooling
- Snake ramp up (goal is 2.7 T)
- Tune shift compensation through quadrupole jumps

T1: Siberian Snake Commissioning

- Injection of a polarized p-beam
- Acceleration@135 MeV (521 MeV/c)
- E-cooling
- Snake ramp up (goal is 2.7 T)
- Tune shift compensation through quadrupole jumps
- Detect polarization rotation into the horizontal plane via monitoring the beam vertical polarization with JePo polarimeter

T1: Siberian Snake Commissioning Quenching Issue

2.7 T with 1.56 A/s 300 s dwell time

2.7 T with 1.17 A/s 500 s dwell time

T1: Siberian Snake Commissioning Tune Shift

Tune shift observed during Snake ramp

 $(3.573; 3.688) \longrightarrow (3.562; 3.709) \longrightarrow (3.572; 3.664)$

T1: Siberian Snake Commissioning Tune Shift

- Tune shift observed during Snake ramp
- Compensation through step wise snake ramp + slow quadrupole jump

Necessary because:

•
$$f_{Sol}^{-1} \propto B_{Sol}^2$$

•
$$f_{Sol}^{-1} \propto B_{Sol}^2$$

• $f_{Quad}^{-1} \propto k \propto \frac{\partial B_{Quad}}{\partial x}$

T1: Siberian Snake Commissioning Tune Shift

- Tune shift observed during Snake ramp
- Compensation through step wise snake ramp + slow quadrupole jump

Necessary because:

•
$$f_{Sol}^{-1} \propto B_{Sol}^2$$

•
$$f_{Sol}^{-1} \propto B_{Sol}^2$$

• $f_{Quad}^{-1} \propto k \propto \frac{\partial B_{Quad}}{\partial x}$

The MAD-X model of COSY was used to 'predict' the Snake action. The Snake solenoid and the e-cooler magnets were implemented during the beam time

T1: Siberian Snake Commissioning Phase Space Coupling

The snake high field introduces a phase space coupling

Tune split appears

$$\Delta \nu_{min} = \frac{gB_{Sol}L}{4\pi |B\rho|}$$

• Tunes near the resonance $v_x - v_y = 0$ cannot be reached while the solenoid is on

T1: Siberian Snake Commissioning Results

Initial Tunes: $v_x = 3.572$; $v_y = 3.688$

Flattop @ 2.7 T

MQU1/MQU5 and MQU2/MQU6 used to compensate the tune shift

~2.5e08 particles survive after ramp-down

Jump	B _{Sol}	MQU 1,5	MQU 2,6	MQU 4
I	0.0 T	123%	-23%	185%
11	0.0 T – 1.5 T	-23%	-8.5	0.0%
III	1.5 T – 2.4 T	-90%	11%	0.0%
IV	2.4 T – 2.7 T	-15%	0.0%	0.0%

- Multi-purpose silicon vertex detector installed around the storage cell for:
 - p-p (p_{bar}-p) elastic
 - p-d elastic
 - Deuteron breakup
- Energy 30-200 MeV

- Installed at PAX section for commissioning with 2 quadrants
- Unpolarized p beam vs. polarized d target

- Installed at PAX section for commissioning with 2 quadrants
- Unpolarized p beam vs. polarized d target
- Identification of p-d elastic events

T2: PAX Detector Commissioning Results

Determination of target polarization

- 4 quadrants assembled!
- Test bench for data acquisition from cosmics was set up before CoVid-19 crisis started
- Full commissioning foreseen at COSY, according with the coordinated management of the PAX interaction point

Deliverables and Milestones

✓ D30.1 'Report on snake and detector commissioning delivered in May 2020.

Deliverable Number ¹⁴	Deliverable Title	Lead beneficiary	Type ¹⁵	Dissemination level ¹⁶	Due Date (in months) ¹⁷
1030	Report on snake and detector commissioning	30 - INFN	Report	Public	12

Deliverables and Milestones

✓ D30.1 'Report on snake and detector commissioning delivered in May 2020.

Deliverable Number ¹⁴	Deliverable Title	Lead beneficiary	Type ¹⁵	Dissemination level ¹⁶	Due Date (in months) ¹⁷
D30.1	Report on snake and detector commissioning	30 - INFN	Report	Public	12

- MS70: Detector commissioning
 - ✓ Commissioned in COSY with 2 assembled quadrants
 - ✓ First measurement of target polarization
 - √ 4 quadrants completed and assembled
 - Full commissioning foreseen at PAX place

Deliverables and Milestones

✓ D30.1 'Report on snake and detector commissioning delivered in May 2020.

Deliverable Number ¹⁴	Deliverable Title	Lead beneficiary	Type ¹⁵	Dissemination level ¹⁶	Due Date (in months) ¹⁷
D30.1	Report on snake and detector commissioning	30 - INFN	Report	Public	12

- MS70: Detector commissioning
 - ✓ Commissioned in COSY with 2 assembled quadrants
 - ✓ First measurement of target polarization
 - ✓ 4 quadrants completed and assembled
 - Full commissioning foreseen at PAX place
- MS71: Snake commissioning
 - ✓ First commissioning beam time performed in March
 - ✓ Compensation of the tune shift induced by the solenoid
 - Second beam time requested

What's next...?

- The COSY model used to determine how to change the quadrupole strengths during snake ramp needs to be further developed and benchmarked
 - Compensation of the tune variation through the implementation of a tune feedback → beam time requested (end of 2021)
 - Compensation of the phase-space coupling via the introduction of skew quardupoles in the beam line
 - Resuming PAX detector acquisition on test bench
 - Full commissioning of PAX detector foreseen at COSY, according to the availability of the PAX interaction point
 - Longitudinal spin filtering experiment foreseen at COSY

Thank you for your attention!