

Introduction

- The TWEPP workshop is covering the aspects of :
 - Electronics for particle physics experiments, and accelerator instrumentation of general interest to users
- The purpose of the workshop is to :
 - Present results and original concepts for electronic research and development relevant to LHC experiments
 - Review the status of electronics for the LHC experiments
 - Identify and encourage common efforts for the development of electronics
 - Promote information exchange and collaboration in the relevant engineering and physics communities
- Covered topics :
 - ASIC
 - Optoelectronics and Links
 - Packaging and Interconnects
 - Power, Grounding and Shielding
 - Production, Testing and Reliability
 - Programmable Logic, Design Tools and Methods
 - Systems, Planning, Installation, Commissioning and Running Experience
 - Radiation Tolerant Components and Systems

ASIC contributions

- 21 oral presentations
 - Data transfer IpGBT (7)
 - Readout Chips ROC (10)
 - Monolithic pixels ROC (4)
 - Readout chips for Timing Layers (3)
 - Other Readout chips Fast data readout (3)
 - IP blocks: PLL/CDR, Monitoring ADC (3)
- 24 posters
 - Data Transfer (1)
 - Readout Chips ROC (10)
 - Monolithic pixels ROC (3)
 - Readout chips for Timing Layers (3)
 - Readout chips for MicroMegas detector
 - Fast readout data
 - ASICs for cryogenic environment
 - ASICs for Detector Control System (DCS) and monitoring

IpGBT project

- 1. Project description
- 2. CPPM contribution
- 3. Prospectives

IpGBT project

Pin count: 289 (17 x 17)

Pitch: 0.5 mm

Size: 9 mm x 9 mm x 1.25 mm

- More than a "Communications ASIC"
- Rates: 5.12 or 10.24 Gbps (for uplinks) and 2.56 Gbps (for downlinks)
- Enables the implementation of Radiation Tolerant Links: DAQ, Trigger, Slow control
 - Designed for radiation hardness
 - Total Ionizing Dose (TID): 200 Mrad
 - Extensive SEU protection (TMR)
- Implements Control and Monitoring Functions :
 - I2C Masters, 16 –bit General Purpose I/O port, Output reset pin, 10 –bit ADC (8 multiplexed inputs), 8 –bit voltage DAC, 8 –bit current DAC, Temperature sensor

The lpGBT: a radiation tolerant ASIC for Data, Timing, Trigger and Control Applications in HL-LHC, P.Moreira et al.

IpGBT communication

- The counting room
 - Optical fibre links
- The FE modules / ASICs
 - Electrical links (eLinks)
- The Number and Bandwidth of eLinks is programmable
- For Down eLinks
 - Bandwidth: 80/160/320 Mbps
 - Count: 16/8/4
- For Up eLinks

Input eLinks (uplink)												
uplink bandwidth [Gbps]	5.12						10.24					
FEC coding	FEC5			FEC12			FEC5			FEC12		
Bandwidth [Mbps]	160	320	640	160	320	640	320	640	1280	320	640	1280
Maximum number	28	14	7	24	12	6	28	14	7	24	12	6

Example of the RD53 FE chip

Control command: 320 Mbps Output Data: 4 × 1.28 Gbps/s The lpGBT: a radiation tolerant ASIC for Data, Timing, Trigger and Control Applications in HL-LHC, P. Moreira et al.

5

CPPM participation

- GBTIA: 5 Gbps fully differential transimpedance amplifier
 - Designed for photodiode capacitance values lower than 500 fF
 - Sensitivity of −19 dBm with a BER of 10⁻¹²
 - Radiation tolerant up to 200 Mrad
 - Wafer tests for production

A 5-Gb/s Radiation-Tolerant CMOS Optical Receiver, Menouni, M. ; Tianzuo Xi ; Ping Gui ; Moreira, P $\,$ IEEE $\,$ TNS

GBTIA → IpGBTIA

InGaAs photodiode :

- Advantage : Lower degradation of the responsivity with irradiation
- Drawback : Strong increase of the junction capacitance with irradiation
- The GBTIA post-irradiation eye diagram shows a strong increase of the deterministic jitter
 - Jitter levels incompatible with the lpGBT applications, mainly for clock recovery
- IpGBTIA designed to cope with the InGaAs photodiode capacitance increase
 - Process CMOS 65nm
 - A constant output swing of 400 mV
 - For a power supply of 2.5 V the power consumption is 73 mW
 - For -6 dBm input :
 - Rise time = 30 ps
 - Total jitter = 0.15 UI @ BER = 10⁻¹²

GBTIA: 2.56 Gbit/s
With Irradiated InGas
photodiode

Eye diagram 2.56 Gbit/s Optical power = -6 dBm Differential

The lpGBTIA, a 2.5 Gbps Radiation-Tolerant Optical Receiver using InGaAs photodetector, M. Menouni et al.

Outlook ideas

- Pulse Amplitude Modulation with 4 amplitude levels PAM-4
- "Symbols represent two bits
 - Level 0: 00
 - Level 1: 01
 - Level 2: 10
 - Level 3: 11
- PAM-4 enables twice the transmission capacity when compared with NRZ
- Two bits transmitted each symbol period

- PAM-4 standard within the IEEE 802.3 Ethernet and Optical Internetworking Forum (OIF)
- Data rates are highly correlated with the technology nodes
- State of Art of the Commercial systems based on FPGA :
 - 116 Gbps PAM-4 from Intel & Xilinx
- Radiation hard ASICs :
 - Research papers showed that 40 Gbps NRZ possible for nodes ≤ 65 nm
 - PAM-4 : 28 nm or below ?

Outlook ideas

- Data rate is correlated with the technology node
- PAM-4 → doubles the transmission capacity
 - 116 Gbps or 58 Gbps ? (TID effects)
- Several technology nodes can be envisaged
- The 28nm becomes the workhorse
 - Irradiation tests already started at CERN and other HEP institutes
 - CPPM contribution to this task?
 - Tests
 - TID effect Modeling
- Other ideas :
 - Building block for PAM4 :
 - PIN Receivers
 - Laser / VCSEL Drivers
 - ADCs
 - PLL & CDR
 - Serializers & DeSerializers
 - Drivers and receivers for electrical cables
- This work can be conducted in collaboration with CERN and involving other in2p3 labs
- A document is currently being prepared

Serial Links Beyond 10 Gbps: P.Moreira, ACES 2018

Thank you for your attention

Futur developments

- Développements futurs de liens haute vitesse (optiques ou électriques) dépendent de :
 - Machine et des niveaux de radiation :
 - HL LHC: > 100 Mrad
 - CLIC: < 1 Mrad
 - FCC: > 1Grad
 - Type du détecteur (Detectors à pixels, Calorimètres)
 - Vitesse requise pour la transmission
 - Puissance
- programme R&D (2020 2025) :
 - Upgrade HL-LHC ("LS4")
 - Préparer la voie pour d'autres projets futurs (FCC, ...)
 - Quantité de données très importante
 - Environnement niveaux d'irradiation extrêmes

Performances actuelles

- Performances des ASICs pour la physique des particules sont limitées :
 - Longs cycles de développement
 - Qualification pour la tolérance à la dose
 - Utilisation d'anciennes générations de process (accès et coût)
 - Techniques de design Circuit:
 - Tolérance à la TID et aux SEU
- Pour les R&D 2020 to 2025
 - Cibler 20 40 Gb/s
 - Compatibilité avec les performances des FPGA

HEP:

- Long development cycles
- · Relatively old technology node
- TID and SEU techniques required

Radiation hardness

- Radiation hardness is the major technical challenge:
 - High-Speed CMOS Asics currently being used by the HEP community will not survive TID doses higher than 100 / 200 Mrad
 - Experience in qualifying active optoelectronic components points to the exclusion of opto-devices for radiation environments exceeding 3×10¹⁵ n/cm2
 - The radiation resistance is not changing with new generations of optoelectronic components
- Possible Solutions:
 - Explore new commercial IC technologies
 - Large qualification work
 - Explore new optoelectronic devices:
 - Optical modulators with external and remote laser source
 - Explore electrical links for extreme radiation environments:
 - Large bandwidths in low mass cables might be difficult to achieve (RD53)

Planning du LHC

PHASE II Upgrade

ATLAS, CMS major upgrade

IpGBTIA performance

- Pre-irradiation results
- InGaAs photodiode capacitance <400 fF
- At 2.56 Gbps, the IpGBTIA is showing similar results as for the GBTIA receiver
 - Similar Sensitivity, Eye amplitude, Eye height
 - The measured Jitter is higher for the lpGBTIA due to non-50% crossing point

IpGBTIA performances

- Pre-irradiation results performances are very similar for receivers based on InGaAs or on GaAs photodiode
 - Negligible leakage current for both devices
 - Similar junction capacitance before irradiation (< 400 fF)

Xray Irradiation

- 2 samples were measured
 - B1: Albis InGaAs photodiode tested up to 550 Mrad
 - B4: ULM GaAs photodiode tested up to 160 Mrad
- Dose rate : 9 Mrad/hour
- External power applied to both 2.5 V and 1.2 V pads
- The power consumption decreases with the TID
 - Thick oxide transistors used for 2.5V to 2V conversion
- The responsivity loss is < 15% for the InGaAs sample and recovers its initial value with annealing
- Sensitivity and jitter not affected
- Eye-parameters vs input optical power seems unchanged regarding the pre-irradiation values

Neutron Irradiation

- Several samples exposed to 20 MeV neutrons at the Cyclotron of Louvain la Neuve (T2 beamline)
- Receiver based on InGaAs photodiode is showing better results than GaAs after irradiation in terms of sensitivity or responsivity
 - Validating the architecture choice

Conclusion and Perspectives

- The 2.56 Gbps IpGBTIA receiver is developed with the commercial 65 nm process
- The design maintains good performance coping well with the shift of the InGaAs photodiode parameters with irradiation
 - Leakage current and junction capacitance increase
- A new photodiode bias circuit is proposed and implemented in order to maintain the photodiode capacitance at a reasonable value
- The optical receiver based on the IpGBTIA and InGaAs photodiode was tested and showed good performance at 2.56 Gbps
- Several samples were irradiated with X-ray and 20 MeV neutrons
- Irradiation tests showed that the performances in terms of responsivity and sensitivity are still acceptable for 3x10¹⁵ n/cm2
- Increase of the power consumption while irradiated
 - Still to be understood
 - Heavy Ions and Two-Photon SEU tests to be done soon

Main measurements

- The main receiver side parameters are : responsivity and sensitivity
- Measured by attenuating the input signal with predefined steps and measuring :
 - The photocurrent level (RSSI signal)
 - The Bit Error Rate (BER)
 - The input optical power at each attenuation step
- The responsivity is derived from a linear fit of the photo current versus the input optical power
- The sensitivity is defined as the input optical modulation amplitude producing a BER of 10⁻⁹
- The signal amplitude, the eye height and the Jitter are extracted from the measured eye diagram

Le chip GBTIA

GBTIA-ROSA

- Process CMOS 0.13 μm.
- □ n-MOSFET : f_T de l'ordre de 100–120 GHz
- ☐ Taille du chip : 0.75 mm × 1.25 mm
- Excellentes performances
- 5 Gbits/s : sensibilité de -19 dBm pour BER=10⁻¹²
- Consommation < 120 mW
- Tolérance aux radiations > 200 Mrad
- Nouveau design en 65 nm pour début 2018