BNS mergers as multimessenger sources: population prospects and applications

Raphaël Duque w/ E. Chassande-Mottin, F. Daigne, S. Mastrogiovanni, R. Mochkovitch & H. Zitouni

GdR ondes gravitationelles: joint meeting of March 10th, 2021

References: 1905.04495 2012.12836 2103.00943

- GW170817: BNS inspiral signal
- GRB170817A: Short, hard, weak GRB
- AT2017gfo: Explosive nucleosynthesis-driven kilonova
- Relativistic deceleration shock afterglow: Photometry & Imagery
- (Slowly expanding ejecta afterglow: will data confirm?)

- GW170817: BNS inspiral signal
- GRB170817A: Short, hard, weak GRB
- AT2017gfo: Explosive
 nucleosynthesis-driven kilonova
- Relativistic deceleration shock
 afterglow: Photometry & Imagery
- (Slowly expanding ejecta afterglow: will data confirm?)

...and counterparts: a rich multimessenger dataset

- GW170817: BNS inspiral signal
- GRB170817A: Short, hard, weak GRB
- AT2017gfo: Explosive nucleosynthesis-driven kilonova
- Relativistic deceleration shock afterglow: Photometry & Imagery
- (Slowly expanding ejecta afterglow: will data confirm?)

4

- GW170817: BNS inspiral signal
- GRB170817A: Short, hard, weak GRB
- AT2017gfo: Explosive nucleosynthesis-driven kilonova
- Relativistic deceleration shock afterglow: Photometry & Imagery
- (Slowly expanding ejecta afterglow: will data confirm?)

- GW170817: BNS inspiral signal
- GRB170817A: Short, hard, weak GRB
- AT2017gfo: Explosive nucleosynthesis-driven kilonova
- Relativistic deceleration shock afterglow: Photometry & Imagery
- (Slowly expanding ejecta afterglow: will data confirm?)

Chandra X-ray Observations (0.3-10 keV)

- GW170817: BNS inspiral signal
- GRB170817A: Short, hard, weak GRB
- AT2017gfo: Explosive nucleosynthesis-driven kilonova
- Relativistic deceleration shock afterglow: Photometry & Imagery
- (Slowly expanding ejecta afterglow: will data confirm?)

Why make multimessenger population prospects?

- 1. Replace GW170817 in its **population context**: *It was historic, but was it exceptional?*
- 2. Guide **designing of primary and follow-up instruments** by describing expected targets and their population features
- 3. Guide **multimessenger observation campaigns** by describing expected observables and correlations
- 4. Outline the sources and datasets which will be **available for future multimessenger studies**: merger physics or merger environment studies, multimessenger cosmology, etc.

Emission models Kilonova angle-dependence

- Based on state-of-the-art kilonova modelling with: numerical hydro, nuclear networks, realistic thermalization, radiation transfer, heavy element opacities, etc.
- Empirical fit of polar-to-side contrast (valid for $\theta_v < 60 \text{ deg}$): $M_{\lambda}(\theta_v) - M_{\lambda,\text{polar}} \propto 1 - \cos \theta_v$
- Calibration of polar peak magnitude on AT2017gfo using best estimate for 170817's viewing angle ($\theta_v^{170817} = 15^{+2.5}_{-1.7} \deg$, Ghirlanda et al. 2019)

Emission models Kilonova angle-dependence

- Based on state-of-the-art kilonova modelling with: numerical hydro, nuclear networks, realistic thermalization, radiation transfer, heavy element opacities, etc.
- Empirical fit of polar-to-side contrast (valid for $\theta_v < 60 \text{ deg}$): $M_{\lambda}(\theta_v) M_{\lambda,\text{polar}} \propto 1 \cos \theta_v$
- Calibration of polar peak magnitude on AT2017gfo using best estimate for 170817's viewing angle ($\theta_v^{170817} = 15^{+2.5}_{-1.7} \deg$, Ghirlanda et al. 2019)

Emission models Relativistic afterglow photometry

- slow cooling regime
- that for a **peak-flux-related criterion**, it is enough to consider the core only.

• Standard synchrotron process from front shock-accelerated electrons, most often in the

• In principle, light curve depends on jet angular structure... Numerical computation shows

Emission models Relativistic afterglow imagery

- Total displacement: $\Delta \theta = \Delta t_{\text{VLBI}} \times \frac{\mathrm{d}\theta}{\mathrm{d}t} \big|_{\text{peak}}$
- Determine $\Delta t_{\rm VLBI}$ from the afterglow slopes, which are independent of θ_v (Beniamini et al. 2020)
- Determine $\frac{\mathrm{d}\theta}{\mathrm{d}t}|_{\mathrm{peak}}$ from $\Gamma \times \theta_v = 1$, valid at the peak.

Population model Which distribution for the jet energy?

- Use distribution derived from short GRB luminosity function
- Supposes that short $GRB \equiv BNS$ merger \equiv relativistic jet
- Use two extreme luminosity functions from literature: Wanderman, Piran 2015 (WP15) and Ghirlanda 2016 (G16)

\implies important source of pop. model uncertainty

 $\begin{array}{ccc} & 10^3 & 10^3 & 10^2 & 10^2 & 10^2 & 10^2 & 10^2 & 10^0 & 10^{-1} & 10^{-1} & 10^{-1} & 10^{-2} & 10^{-3} &$

Results

- As of O3: EM sector becomes limiting for multimessenger campaigns, with large fraction of undetectable KN (mag_{lim} = 21). Still tens KN /year for deep searches and design IFOs.
- Among the KN events, 10-20% have a detectable radio afterglow. Detectable source displacement is extremely rare.
- Deep surveys can probe "orphan kilonovae", with **likely short GRB** associations (~2 /year for $r_{\rm lim} > 21$)
- Especially for ToO endeavors: detectable is not detected!

Mastrogiovanni et al. subm.

	GW Run	Electromagnetic information level				
		KN	+ AG light curve		+ source PM	
			WP15	G16	WP15	G
	O2-like	52%	4%	12%	0.67%	7
or	O3-like	45%	1.56%	6.13%	0.18%	1.7
	O4-like	26%	0.37%	3.50%	0.01%	0.2

Applications Multimessenger cosmology

- GW170817: afterglow data provides **independent information** on ι ($= \theta_{\nu}$), which is **degenerate with** D_L in GW data \implies improved standard-siren H_0 measurement 3-fold
- Question: What role will afterglow counterparts play in multimesseger cosmology?
- Answer: They will be **too rare** to contribute to H_0 measurement...
- Discussion: But KN could help (if models improve and allow to measure θ_v). However: beware of **EM systematics** on H_0 and **selection effects**.

Applications **Constraints on GW190425**

- Only likely BNS merger since GW170817, very poorly localized event. Followed-up extensively in optical and NIR: no kilonova detection.
- The system was either
- 1. not located in the searched areas, or
- too faint 2.
- models.

Coverage of GW190425 by ZTF

• Proof of concept of viewing angle constraint from KN non-detection. Method will be effective with genuine non-detections in smaller GW skymaps, and with better KN

Applications **Constraints on GW190425**

- Only likely BNS merger since since GW170817, very poorly localized event. Followed-up extensively in optical and NIR: no kilonova detection.
- The system was either
- not located in the searched areas, or
- too faint 2
- models.

• Proof of concept of viewing angle constraint from KN non-detection. Method will be effective with genuine non-detections in smaller GW skymaps, and with better KN

BNS mergers as multimessenger sources: population prospects and applications Conclusions

- Population model for kilonova and afterglow counterparts to BNS inspiral GW signals
- As GW sensitivity improves: smaller and smaller detection fraction for kilonovae, still tens/year during design-level GW observing runs. Expect only a few with radio afterglow lightcurve sampling, and almost none with source proper motion resolution.
- Applications: we showed that afterglow counterparts should not accelerate resolution of the Hubble tension, and that kilonovae non-detections can inform us on the viewing angle of upcoming BNS events.

References: 1905.04495 2012.12836 2103.00943

