

These are our observables! Everything else is data compression.

In practice...

Galaxy spatial data

→ Global density inference
→ MCMC of initial conditions

Image credits: Paramount Pictures

A data model for galaxy clustering

$$N_{i,j,k}^{(G)}, \gamma_i, \dots$$

Data / catalogs

A data model for galaxy clustering

$$N_{i,j,k}^{(G)}, \gamma_i, \dots$$

Data / catalogs

A data model for galaxy clustering

The 2M++ galaxy compilation

~70 000 galaxies

Lavaux & Hudson (MNRAS, 2011)

The model

ACDM Universe with Planck+15 cosmological parameters

Box of (677.7 Mpc/h)³ 256³ initial condition elements 512³ particles

Particle mesh solver

Redshift space distortions derived from particle simulations

Bias model: $\rho_g \propto \rho_m^{\alpha} \exp\left(-(\rho_m/\rho_0)^{-\epsilon}\right)$

Selection derived from Schechter luminosity function

Inferred density fields

Ensemble average density fields at z=0

Initial condition powerspectrum

Jasche & Lavaux (2019, A&A)

Primordial fluctuations on the sphere

Comparing to actual galaxy distribution

Focusing on COMA

Locating and measuring mass profile

Algorithm to relate clusters to our constrained realizations:

- 1) Density field / particle simulation built for each MCMC file
- 2) Provide an approximate observed position (from NED)
- 3) Find the local maximum peak by iterating the barycenter position with decreasing spherical volume
- 4) Produce the particle/density profile from this position.

Locating and measuring mass profile

Algorithm to relate clusters to our constrained realizations:

- 1) Density field / particle simulation built for each MCMC file
- 2) Provide an approximate observed position (from NED)
- 3) Find the local maximum peak by iterating the barycenter position with decreasing spherical volume
- 4) Produce the particle/density profile from this position.

Result:

- Ensemble of density profiles, inferred jointly with bias
- Corrected position of clusters
- Typically within ~1-5 Mpc/h to NED redshift positions (Note! we include RSD)

Locating and measuring mass profile

Algorithm to relate clusters to our constrained realizations:

- 1) Density field / particle simulation built for each MCMC file
- 2) Provide an approximate observed position (from NED)
- 3) Find the local maximum peak by iterating the barycenter position with decreasing spherical volume
- 4) Produce the particle/density profile from this position.

Result:

- Ensemble of density profiles, inferred jointly with bias
- Corrected position of clusters
- Typically within ~1-5 Mpc/h to NED redshift positions (Note! we include RSD)

Examples!

Coma dynamical properties

Shapley concentration

Shapley concentration

Virgo cluster

PLAY

Jasche & Lavaux; Lavaux & Jasche; Peirani, Lavaux & Jasche (2018, in prep.)

Some more clusters

Hercules cluster

$V[10^4(\text{Mpc}\,h^{-1})^3]$ 0.05 0.42 1.41 3.35 11.31 6.54 10° $M(r) \left[10^{16} \, h^{-1} \, M_\odot \right]$ Agulli et al 2017 Bird et al 1993 Barmby & Huchra 1997 Fernley & Bahvsar 1984 Kopylova & Kopylov 2013 Escalera et al. 1994 Bird & Dickey 1993 10^{-2} 10 15 20 25 30

r[Mpc/h]

Perseus cluster

Coma dynamical properties

Coma dynamical properties

Zoom simulation on Coma (~250 Mpart in zoom)

 $4 \times 10^7 h^{-1} \mathrm{M}_{\odot}/\mathrm{part}$

Time (Gyr)

Other recent techniques

Deep learning based techniques to relate observations to mass:

Ramanah et al. (2020, 2003.05951)

• Use Normalizing flows on 2d phase space distribution

Ramanah et al. (2020, 2009.03340)

Use Convolutional Neural Network on 3d phase space distribution

Conclusion

Holistic dynamical inference of the Local Universe is maturing

Several checks point to unbiased reconstruction

- Individual mass of clusters (Coma, Virgo, Hercules, Shapley concentration, Perseus)
- Cosmological power spectrum
- Velocity field

More work required: some P(k) features

Interactive visualization https://big4.iap.fr/index.php?n=Main.BorgVisu

