Mass profiles of WINGS clusters & orbital shapes of their E, SO and S galaxies Mamon, Cava, Biviano et al. 19

an observer's perspective

Andrea Biviano *OATS, Trieste*

Antonio CAVA formerly Univ. of Geneva

MAMPOSSt: Modeling Anisotropy & Mass Profiles of Observed Spherical Systems Mamon, Biviano & Boué 13

Cluster density profiles traced by galaxies

Stack of 54 z~0.05 regular (WINGS) clusters

 $C_{red} = 4$, $C_{blue} = 1.3$ Collister & Lahav 05

⇒ number profiles consistent with NFW \forall types ⇒ Ellipticals follow mass, spirals 4x wider distribution

Not 1, not 2

model	mass r	mass model ani		inner anisotropy			outer anisotropy			TAND	R^{-1}	$-\ln \mathcal{L}_{MLE}$	#	AIC	BIC
	cluster	BCG	model	E	S0	S	E	S 0	S				free	<u>_</u>	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	posterior	(14)	Bayesian	evidence
1	gNFW		Т	F	F	F	F	F	F	Y	0.004	33526.28	12	67076.62	67154.32
2	NFW	NFW	Т	F	F	F	F	F	F	Ν	0.065	33526.47	16	67085.05	67188.62

Not 1, not 2, but 30 sets of priors!

model	mass m	odel	anis.	inne	er anis	otropy	oute	er anis	sotropy	TAND	R^{-1}	$-\ln \mathcal{L}_{MLE}$	#	AIC	BIC
	cluster	BCG	model	E	S0	S	E	S 0	S	· · ·			free		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	posterior	(14)	Bayesian	i evidence
1	gNFW	-	Т	F	F	F	F	F	F	Y	0.004	33526.28	12	67076.62	67154.32
2	NFW	NFW	Т	F	F	F	F	F	F	Ν	0.065	33526.47	16	67085.05	67188.62
3	NFW	NFW	Т	F	F	F	F	F	F	Y	0.012	33526.50	13	67079.08	67163.24
4	gNFW	_	Т	F	0	0	F	F	F	Y	0.005	33526.50	10	67073.05	67137.80
5	NFW	NFW	gOM	F	F	F	F	F	F	Y	0.007	33526.55	13	67079.18	67163.34
6	gNFW	-	gOM	F	F	F	F	F	F	Y	0.011	33526.79	12	67077.65	67155.34
7	gNFW	-1	Т	F	F	F	F	F	F	Ν	0.040	33526.91	15	67083.92	67181.01
8	NFW	PS4	Т	F	F	F	F	F	F	Y	0.005	33528.33	13	67082.74	67166.90
9	NFW	-	Т	F	F	F	F	F	F	Y	0.002	33528.36	11	67078.77	67150.00
10	NFW	(-1)	Т	F	0	0	F	F	F	Y	0.001	33528.41	9	67074.86	67133.14
11	gNFW	-	Т	0	0	0	F	F	F	Y	0.005	33528.41	9	67074.86	67133.14
12	NFW	_	Т	F	F	F	F	F	F	Ν	0.031	33528.50	14	67085.09	67175.72
13	NFW	-1	Т	0	0	0	F	F	F	Y	0.002	33528.54	8	67073.11	67124.92
14	NFW	PS4	Т	F	F	F	F	F	F	Ν	0.043	33528.55	16	67089.21	67192.77
15	NFW	_	gOM	F	F	F	F	F	F	Y	0.003	33528.92	11	67079.90	67151.12
16	NFW	-	Т	0	0	0	0	F	F	Y	0.003	33529.20	7	67072.42	67117.76
Einas	tO (free <i>n</i>)	-1	Т	0	0	0	0	0	F	Y	0.002	33529.74	6	67073.50	67118.84
18	gNFW	_	Т	0	0	0	0	0	F	Ν	0.015	33529.90	8	67075.83	67127.64
19	gNFW		Т	0	0	F	0	0	F	Y	0.003	33530.03	8	67076.09	67127.90
20	NFW	_	Т	0	0	0	0	0	F	Ν	0.007	33530.23	7	67074.48	67119.82
21	gNFW	-	Т	0	0	0	0	0	F	Y	0.002	33530.27	7	67074.56	67119.90
22	NFW	-	Т	0	0	F	0	0	F	Y	0.002	33530.35	7	67074.72	67120.06
Einas	to (<i>n</i> =6)	-	Т	0	0	0	0	0	F	Y	0.002	33530.50	6	67073.02	67111.88
24	NFW	-1	Т	0	0	0	0	0	F	Y	0.001	33530.68	6	67073.38	67112.24
25	cNFW		Т	0	0	0	0	0	F	Y	0.003	33532.30	6	67076.62	67115.48
Herno	luist	_	Т	0	0	0	0	0	F	Y	0.001	33534.44	6	67080.90	67119.76
27	NFW	_	gOM	0	0	0	0	0	F	Y	0.002	33537.09	6	67086.20	67125.06
28	NFW	-	iso	0	0	0	0	0	0		0.002	33538.52	5	67087.05	67119.44
29	NFW	-	Т	0	0	0	0	F	0	Y	0.001	33539.46	6	67090.94	67129.80
30	NFW	-1	Т	0	0	0	F	0	0	Y	0.002	33539.56	6	67091.14	67130.00

concentration vs. mass

Gary Mamon, Mass profiles of WING

Which morphology traces best the mass?

Outer vs. inner Velocity Anisotropy

sigv stack, NFW DM

Effect of stacking method

Gary Mamon, Mass profiles of WINGS clusters and orbital shapes of their E, S0 and S galaxies, 11 Dec 2020, Journées Amas France

Why do ellipticals & SOs have isotropic inner orbits?

morphologically transformed from infalling spirals

dynamical friction of parent infalling groups

violent relaxation in merging clusters

1/3 of clusters undergo major mergers since *z*=1 (~1.5 galaxy orbits)

artificial phase mixing of imperfectly stacked halos

Why do spirals have isotropic inner orbits?

4x larger scale radius \Rightarrow rapid morphological transformation (< 1 orbit) \Rightarrow narrower range of pericenters (& apocenters)

selection effect from rapid morphological transformation of spirals!

Conclusions

Cluster number density profiles	well fit by NFW within <i>r</i> _{vir} and out to > 10 <i>r</i> _{vir} ! Trevisan, GM & Stalder 17							
Cluster mass density profiles	NFW or possibly steeper (BCG?)							
concentration vs. mass	consistent with simulations							
Galaxies vs. mass	Ellipticals trace mass best, spirals poorly S0s closer to ellipticals							
Outer orbits in clusters S more	radial, E more isotropic, S0s closer to S(?)							
Inner orbits in clusters S: select	isotropic! E/S0: dyn'l friction of groups + violent relax'n S: selection effect of small range of pericenters							