GROUPS AND CLUSTERS OF GALAXIES WITH ATHENA

ATHENA

Advanced Telescope for High ENergy Astrophysics

The next generation of X-ray observatory after the XMM-Newton and Chandra, after XRISM

Second Large mission of the ESA's Cosmic Vision science program

Operating simultaneously with major space/ground-based facilities (ELT, SKA, LISA)

Implementing to the Hot and Energetic Universe

How does ordinary matter assemble into the large scale structures that we see today? How do black holes grow and shape the Universe?

THE HOT UNIVERSE

THE HOT UNIVERSE

FEEDBACK AND CO-EVOLUTION

Groups and clusters form at the apex of astrophysical activities of the Universe

Star formation and SMBH accretion history (Madau & Dickinson, 2014)

Entropy profiles out to z~1 (McDonald et al. 2014)

FEEDBACK AND CO-EVOLUTION

Evolution of the gas thermodynamics during collapse and growth of halos

Observation of samples out to the epoch of cluster formation ($z\sim2$)

X-IFU/Athena: entropy distribution in a M₅₀₀~5x10¹³M_☉ at z=2 cluster (Cucchetti et al. 2018, Pointecouteau et al. 2013)

CHEMICAL ENRICHMENT

Chemical radial distribution, relative abundances, evolution (adapted by & from Mernier et al. 2018)

CHEMICAL ENRICHMENT

Oxygen reconstructed map and relative abundances view by X-IFU view (Cucchetti et al. 2018, Mernier et al. 2020)

ASSEMBLY OF STRUCTURES

X-ray and panchromatic view of the Perseus cluster core

X-ray: NASA/CXC/loA/A.Fabian et al.; Radio: NRAO/VLA/G. Taylor; Optical: NASA/ESA/Hubble Heritage (STScI/AURA) & Univ. of Cambridge/loA/A. Fabian

GAS MOTIONS AND TURBULENCE

Measurements of turbulent and bulk motions

Non thermal pressure from the gas fraction

Statistics of brightness fluctuations (massive nearby clusters)

Resonant scattering (low mass systems, i.e., galaxies)

ASSEMBLY OF STRUCTURES

Direct measurements of the bulk motions and turbulent velocity fields

Shift and broadening of X-ray line emission

Hitomi bulk motions in the Perseus core (Hitomi Coll. 2017

Measurement of turbulence and gas motions with X-IFU/Athena (Cucchetti et al. 2018,

Key characteristics

Spatially resolved high spectral resolution

(Credits: X-IFU team — data courtesy of C.

The Wide Field Imager

Silicon Active Pixel Detector based on DEPFET technology

Field of view: 40'×40'

2.2" pixel size (PSF oversample)

Spectral resolution <80 (<170) eV @ 1 (7) keV

Separate chip for fast readout of brightest sources

up to 10 Crab intensity

Consortium led by MPE (PI: K. Nandra)

Partners: DE, AT, DK, FR, IT, PL, UK, CH, P & GR and NASA

French contributions

CEA/DAp, ObAS

WFI focal plane assembly (Credits: MPE & WFI team)

The X-ray Integral Field Unit

Large micro-calorimeter array (TES)
Cryogenic instrument cooled down to 50 mK
2.5 eV spectral resolution up to 7 keV

5' hexagonal field of view

Capability to observe bright sources (1 Crab, 10 eV, 5-8 keV)

Consortium led by IRAP (PI: D. Barret)

Partners: NL, IT, BE, CZ, FI, DE, IR, PL, ES, CH and contributions from Japan and US

French contributions

CNES is prime for the instrument APC, CEA/SBT, CEA/DAp, IRAP, IAS, LAM, ObAS

PERFORMANCES

WFI survey speed (Credits: WFI team)

X-IFU Weak line sensitivity (Credits: IRAP & X-IFU team)

A leap by at least an order of magnitude in sensitivity over current or planned facilities

About 8 times more sources pointing in ~7 times shorter exposures with WFI (compared to Chandra) 10 times weaker lines detected with X-IFU (compared to XRISM)

ATHENA

Milestones

Redbook prepared together with A&A support papers by the community for June 2021 Adoption of the mission by ESA in 2022

Flight model delivery to ESA in 2029

Launch on board an Ariane 6 in the early 30's

Athena is rising on the horizon

Technology is ramping up and instruments are being developed Your next generation X-ray observatory Stay tune and get involved!

CONCLUSIONS

A Versatile Observatory

Serving many astrophysics domains and a broad community

Transformational capabilities

Spatially resolved high resolution spectroscopy

Wide field imaging

A strong French involvement

X-IFU is a cryogenic instrument, using cutting edge technologies.