

DE LA RECHERCHE À L'INDUSTRI

cea

LEM/Anodes and CRP Improvement Plan

Edoardo Mazzucato CEA/Irfu

LEM Improvement Plan

Three issues being addressed:

- LEM active area. In ProtoDUNE-DP, LEM active area reduced to 86% in order to mitigate spark rates in the boundary regions of the PCB. Would like to achieve > 95% for DUNE.
- LEM HV stability. Aim is to keep spark rates as low as possible for very long term operation in DUNE and avoid ageing effects. Spark rates < 1/h per CRP at gains ~ 20 in Cold Box tests at CERN in 2018.
- Rim defects. LEM carbonization issues found during Cold Box tests point to method used by ELTOS (Italy) for the micro-etching process of rims around amplification holes.

Reminder : carbonization issues during CB tests in 2018

In total, 5/72 LEMs affected by such problems

Issues point to standard micro-etching process used by ELTOS to make rims.

Carbonization spots

copper residues

Decentered rims with

Standard micro-etching process by ELTOS

In a chemical bath

Improved micro-etching process for rims

- Developed at CERN by EP-DT-EF.
- LEM copper surfaces protected with thin (15 μm) adhesive copper foils before drilling.
- Micro-etching only around holes, visible through transparent glue.

50×50 cm² LEM manufactured at CERN

Technology transferable to PCB industry

LBNC Review Meeting

(d)

LEM with improved rims

Prototype built by CERN with same design as the one for ProtoDUNE-DP

 10^{-1}_{-1000}

Gain

LEM with insulation

- Improve HV stability by insulating areas where E-field is high (edges, corners, boundary regions).
- Add 64 µm coverlay (Pyralux PC) on dead areas.
- Use improved rim micro-etching process.
- Prototypes built at CERN by EP-DT-EF.
- Technology transferable to industry.
- If successful, increase active area.

LEM prototypes being constructed at CERN

LEM with insulation

First prototype with insulation and improved rims arrived at CEA/Irfu on Nov. 25th 2019

First tests in pure Ar @ 3.3 bar

- Tests in progress at CEA/Irfu.
- Spark rates and amplification gain measurements up to max. HV to be performed soon.

Resistive LEM

- Quenching of discharges with resistive 50×50 cm² LEM :
- Made at CERN EP-DT-EF :
 - copper side facing readout anode
 - DLC on 50 μm APICAL polyimide film (250 M Ω/\Box)
 - same geometry as CFR-35 (ProtoDUNE-DP)
 - no rims, no gold plating on copper face.
- Tests in progress at CEA/Irfu.
- R&D will continue in collaboration with CERN.

05/12/2019

LBNC Review Meeting

ime bin

Anode

- No change needed in the anode concept.
- Facilitate manufacturing process with minor changes to fix observed defects (about 10% of anodes for ProtoDUNE-DP had their outer strips damaged ⇒ increase clearance).

In discussion with ELTOS (Italy) and ELVIA (France) to improve QC/QA.

CRP

LAPP in Annecy is working on the following improvements:

- Stiffening of the Invar structure :
 - to guarantee a ± 1 mm planarity in cold
 - to make structure less sensitive to inhomogeneous distribution of mass like cables, instrumentation.
- Implementation of a guard ring around the CRP to avoid grid sparks to reach the anodes and thus potentially damage the FE electronics.
- Development of resistive combs for the Grid to collect ions remaining on the LAr surface (ion feedback). Needs more input from ProtoDUNE-DP

Consider the possibility to increase LEM-Grid distance from 10 to 12 mm.

Possible schedule for a 2-CRP production *(to replace the current 2 dummy CRPs)*

- **2020:**
 - LEM prototyping and tests at CEA/Irfu, tests in CB at CERN.
 - LEM & anode final design.
 - CRP prototyping and tests: guard ring, resistive combs.
 - CRP final design.
- **2021**:
 - Early 2021: start production of 1st CRP.
 - Mid-2021: tests in CB at CERN and start production of 2nd CRP.
- **2022:**
 - Test of 2nd CRP in CB at CERN.
 - Integration in cryostat.