
Centre de Calcul
de l’Institut National de Physique Nucléaire
et de Physique des Particules

DU Data Science 2020
Storage overview

Loïc Tortay, tortay@cc.in2p3.fr
License Creative Commons BY-NC-SA

https://creativecommons.org/licenses/by-nc-sa/4.0

https://creativecommons.org/licenses/by-nc-sa/4.0

2Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Bytes for data storage, ISO/IEC 80000-13:2008 standard (& EN 60027-
2:2007 derived from IEC 60027):

➢ one kilobyte (kB) = 1000 bytes
one megabyte (MB) = 1000 kB, etc. up to yottabyte (1 YB = 1000
ZB = 106 EB = 109 PB = 1012 TB = 1015 GB = 1018 MB = 1021 kB =
1024 bytes)

➢ 1024 bytes = 1 kibibyte (KiB)
1 mebibyte (MiB) = 1024 KiB, etc. up to yobibyte (1 YiB = 1024 ZiB
= 220 EiB = 230 PiB = 240 TiB = 250 GiB = 260 MiB = 270 KiB = 280
bytes)

➢ En Français : 1024 octets = 1 kibioctet (Kio), etc.
➢ Bits (mostly) for data transfer:

➢ one megabit (Mbit) = 1000 kilobit (kbit) = 106 bits, etc.
1 Mbit/s, 1 Gbit/s, etc. (bit/sec & bps also common)

2020-03-10

Units for data storage & transfer

3Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ File: sequences of bytes, one dimensional array, index in the array
called offset

➢ Directory (a.k.a. folder): file containing a list of other file(s) name(s)
➢ Link: file which contains a reference to another file

2020-03-10

Local storage: basics

4Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Most modern operating systems (Windows, Linux, macOS, ...) do not
care about the actual content of files

➢ Files content can be:
➢ structured (e.g. binary files like JPEG image, NumPy or ROOT data

file, extreme case is database table), usually includes some sort of
headers with parameters

➢ unstructured (e.g. text file, like source code), in many cases even
unstructured data has some structure (e.g. HTML/XML, JSON, Pickle,
CSV, ...)

➢ Operating systems & programming languages often provide different
access functions for text (line-oriented) and binary (byte-adressed)
files

2020-03-10

Local storage: files

5Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Names are organized in a tree, with a root (top-level directory):

➢ Characters allowed in filenames:
➢ Unix/Linux: everything but / and \0 (ASCII NUL)
➢ Windows: everything but \0 and ["\/<>?*:|]

2020-03-10

Local storage: namespace [1/2]

File 12

Directory 0

Directory 5

Directory 2

Directory 7

File 4

File 10

File 9

File 7
Root Directory 1

File 3

Leaf

6Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Names are organized in a tree, with a root (top-level directory):

➢ Characters allowed in filenames:
➢ Unix/Linux: everything but / and \0 (ASCII NUL)
➢ Windows: everything but \0 and ["\/<>?*:|]

2020-03-10

Local storage: namespace [2/2]

File 12

Directory 0

Directory 5

Directory 2

Directory 7

File 4

File 10

File 9

File 7
Root Directory 1

File 3

Link 7

Link 11

Link 42

Leaf

7Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ (File)names can be relative (to a directory) or absolute (include the
names of all the directories from the root of the filesystem up to the
filename)

➢ Qualified names are sequences of component names and separators:
➢ on Unix/Linux, the separator is /
➢ on Windows the usual separator is \ but in many cases / works too

➢ Absolute filename examples: /home/myaccount/.bashrc or
C:\Windows\Notepad.exe

➢ Relative filename example: ../src/plop.py
➢ On Unix/Linux, directories names do not require a trailing /, which is

not part of the name:
directory/ ≡ directory/. ≡ directory

2020-03-10

Local storage: names

8Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Filesystem (a.k.a. file system): persistent data structure (on storage
media) binding human readable names, data position on media, space
allocation and often other attributes

➢ Filesystems are the product of drive/media formatting
➢ In order to be accessed, a filesystem must be mounted through a

mountpoint (often a directory or a reserved name, like C: on Windows)
➢ Most filesystems allow (require) attributes to be defined for a file,

commonly:
➢ owner
➢ size
➢ last access (read) & modification (write) times
➢ access permissions

2020-03-10

Local storage: filesystems [1/3]

9Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Filesystems often have constraints in terms of global size, file size,
filename length, available attributes, resilience features, ...

➢ The namespace provided by a filesystem is usually consistent for all
programs running on the computer hosting the filesystem

➢ The names, attributes & position information are called the filesystem
metadata

➢ Access permissions can often be defined in two ways:
➢ basic permissions: Unix permissions, DOS/FAT, ...
➢ access control lists (ACL): finer control, Windows (NTFS & ReFS),

Unix (ext3/ext4/XFS/ZFS/...), ...
➢ Extensive documentation on permissions is available, e.g.

https://en.wikipedia.org/wiki/File_system_permissions

2020-03-10

Local storage: filesystems [2/3]

https://en.wikipedia.org/wiki/File_system_permissions

10Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Many filesystems provide a case sensitive namespace (myclass.C ≠
myclass.c), on Unix/Linux almost all filesystems do so

➢ Other file attributes, often called extended attributes (EA), allow users
to define their own metadata for files:

➢ on Unix/Linux: in most cases simple key/value pairs (often with
constraints on value size and key name)

➢ on Windows & macOS: forks (respectively Alternate Data Streams &
resources), parallel namespace tied to a single object possibly with
its own files, directories, access permissions, ...

2020-03-10

Local storage: filesystems [3/3]

11Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ All general purpose operating systems and programming languages
support similar basic file operations:

➢ open & close a file (open, close)
➢ read & write a specified amount of bytes at some offset in the file

(read, readline, write, pread, pwrite, ...)
➢ get/set the default/current read/write offset in the file (tell, ftell,

seek, lseek, fseek)
➢ remove a file (unlink, remove, ...)

➢ For directories:
➢ get the list of files in the directory (readdir, ...)
➢ move to another directory (chdir)
➢ create & remove a directory (mkdir, rmdir)

2020-03-10

Local storage: API (Application programming interface) [1/3]

12Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Python basic examples to
➢ open a (text) file and read its lines:

#!/usr/bin/env python

import sys

with open(sys.argv[1]) as fp:
 for line in fp:
 smode, uid, ssize = line.split(':')[1:6:2]
[...]

➢ open a (binary) file for writes and write some data structure at the
end of it (append):
#!/usr/bin/env python
[...]
with open("../outputfile.dat", "wb+") as output:
 output.write(datastructure)
[...]

2020-03-10

Local storage: API (Application programming interface) [2/3]

13Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

 reads and writes can happen at any offset in a file, a file can be
read/written as a whole or in part(s) depending on your program needs

 file content can be executed (run as a program) either by the
system itself (e.g. compiled binary file like .exe files on Windows) or
through an interpreter (e.g. Python in the previous examples, and
scripted languages like PowerShell, bash, Perl, R, ...)

 when multiple programs running concurrently want to access the
same file and at least one program is writing to that file, a common
mechanism is to use a lock to synchronize access among the
programs to avoid data corruption (in memory and/or on the storage
media)

2020-03-10

Local storage: API (Application programming interface) [3/3]

14Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ On most operating systems, a non persistent copy of recently
accessed data is kept in memory to:

➢ avoid reading from the storage media if data is reused
➢ aggregate small (or non optimally sized) writes to use the storage

media more effectively
➢ in some cases, read data in advance (before a program requests it)

➢ There is often limited user control over cache behaviour
➢ Often depends on available (unused) memory:

➢ stale cache content can be discarded to free up memory in order to
satisfy programs requests

➢ non stale content (writes not commited to storage yet) can be
discarded after a flush (user/system request or memory pressure)

2020-03-10

Local storage: cache

15Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Some filesystems allow quotas to be defined
➢ Quotas can usually be defined for files space and number of files
➢ Quota enforcement can be:

➢ strict, no new data stored after quota is exceeded
➢ relaxed/advisory, user may be notified directly

➢ Rarely used on local storage in a non shared environment

2020-03-10

Local storage: quotas

16Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA2020-03-10

Distributed storage: basic principle

Single machine

Data

Application

Server

Data

Client

Application
Storage application

Client

Application

Client

Application

Client

Application

Network

⇨

17Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Multiple general patterns exist to access data from another machine,
to allow local programs read or write access to this data

➢ Common data access schemes are:
➢ pull/push: pull (copy) the input files to the local machine storage

before processing, push the new or modified (output) files to the
remote storage after processing

➢ direct access: remote machine provides a mechanism for local
program to read/write directly to files without the need for a copy

➢ mixed: depending on the actual I/O pattern, pulling input files might
give better for performance than direct remote access
(e.g. file read as a whole anyway, many random reads from a large
file, many small random writes to a large file, ...)

2020-03-10

Distributed storage: basic use cases

18Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA2020-03-10

Distributed storage: pull/push trivial example

➢ Batch job script example:
#!/bin/sh

Get input files (pull)
wget -v https://somewhere.fake.fr/data/123456789.tgz -O $TMPDIR/input.tgz
[-s $TMPDIR/input.tgz] || { echo "Input data retrieval failed"; exit 1; }

Extract the content of the input archive
cd $TMPDIR && tar zxf input.tgz && rm -v input.tgz

Process the data using a Python Virtual Environment
. ~/fake-processing-venv/activate.sh
~/fake-processing/do-something.py --input-dir $TMPDIR --output $TMPDIR/${JOBID}.txt

Check processing exit value & output file size
[$? != 0 -o ! -s $TMPDIR/${JOBID}.txt] && { echo "Processing failed"; exit 1; }

Push back result somewhere (some configuration required)
scp $TMPDIR/${JOBID}.txt machine.fake.fr:fake-processing/output

Cleanup
rm -rf $TMPDIR

19Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA2020-03-10

Distributed storage: direct access trivial example

➢ Batch job script example:
#!/bin/sh

Process the data using a Python Virtual Environment
. ~/fake-processing-venv/activate.sh

INPUTDIR=/data/mygroup/me/fake-processing/inputs/123456789

cd /data/mygroup/me/fake-processing/outputs
~/fake-processing/do-something.py --input-dir $INPUTDIR --output ${JOBID}.txt

Check processing exit value & output file size
[$? != 0 -o ! -s ${JOBID}.txt] && { echo "Processing failed"; exit 1; }

20Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Provide acces to a filesystem beyond the limit of a single machine (like
Windows Shared Folder)

➢ Transparent access (same API), same program running on:
➢ a laptop, accessing data on the laptop
➢ on a computing infrastructure, accessing data on the computing

infrastructure
➢ Many solutions exist, for example:

➢ export a local filesystem over a network (NFS, SMB, ...)
➢ use a parallel filesystem (Lustre, GPFS, BeeGFS, ...)

➢ Filesystems usually allow: in-place updates, program execution, partial
read & writes

2020-03-10

Distributed storage: shared filesystem

21Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Shared namespace among clients
➢ Shared user identification (permissions, accounting)
➢ Single or multiple servers for actual data storage
➢ Single or multiple servers for data access
➢ Consistent (shared) view (POSIX-like semantics) or not:

➢ data caching on clients
➢ data/file locking on clients

➢ Quotas

2020-03-10

Distributed storage: shared filesystem

22Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA2020-03-10

Distributed storage: distributed filesystem

1 ⇨ 1 server:N clients

Single machine

Data

Application

Server

Data

Client

Application
Storage application

Client

Application

Client

Application

Client

Application

Network

⇨

23Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA2020-03-10

Distributed storage: parallel filesystem/storage

M:N ⇨ M servers:N clients

Client

Application

Server

Data

Storage application

Client

Application

Client

Application

Client

Application

Server

Data

Storage application

Server

Data

Storage application

Network

24Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Shared namespaces impose synchronisation which limits scalability
➢ Object storage provides access to independent objects: no shared

namespace (no directory)
➢ Objects can be viewed as a generalization of files
➢ Duality of object storage API and actual object storage system (OSD,

like Ceph, Panasas, ...)
➢ Most common current meaning is object storage API:

➢ HTTP(S) transport, REST API, PUT/GET/DELETE of (mostly) whole
objects

➢ de facto standard is Amazon S3, supported by most object storage
systems (often in addition to their own)

➢ de jure standard is CDMI, but is uncommon

2020-03-10

Distributed storage: object storage [1/3]

25Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ User oriented object storage system (Dropbox, iCloud, ...) provide a
user specific namespace, often simulating familiar visible namespace
features (directories)

➢ Basic data organization is the bucket (container), generally:
➢ one user per container
➢ no nested containers
➢ multiple containers per user common

➢ With Amazon S3 (Simple Storage Service):
➢ Object references look like:

http://s3.amazonaws.com/bucket/key
➢ bucket is the bucket identifier
➢ key is the object identifier

2020-03-10

Distributed storage: object storage [2/3]

26Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Permissions can be set per object or container, no need for shared
user identification

➢ Often no support for in-place update: no modification to stored objects,
a new version of the object is created instead

➢ No support for direct program execution (without filesystem view)
➢ Partial reads frequently supported
➢ Partial or continuous writes support uncommon
➢ User defined tags (attributes) can be created & used to select groups

of objects (collections)

2020-03-10

Distributed storage: object storage [3/3]

27Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Python example using the Boto module:
#!/usr/bin/env python

import boto.s3.connection

connection = boto.s3.connection.S3Connection(
 aws_access_key_id='EC2_ACCESS_KEY',
 aws_secret_access_key='EC2_SECRET_KEY',
 port=8080,
 host='s3.amazonaws.com',
 is_secure=True,
 validate_certs=True,
 calling_format=boto.s3.connection.OrdinaryCallingFormat()
)

buckets = connection.get_all_buckets()
for b in buckets:
 print b.name

bucket = conn.get_bucket('mybucket', validate=True)
for key in bucket.list():
 print "{name}\t{size}\t{modified}".format(

name=key.name,
size=key.size,
modified=key.last_modified)

2020-03-10

Distributed storage: object storage API example

28Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Two main classes of distributed storage architectures:
➢ shared nothing: independant servers with no shared storage

resources ⇨ basic model for modern storage systems, scale-out
architectures

➢ shared storage hardware resources: storage specific network and
devices, often only a limited amount of resources actually shared

➢ Difference is mostly balance between:
➢ cost, shared nothing architectures often rely on cheaper servers
➢ available user space, shared nothing architectures often rely on

(simple) data replication
➢ Scale-out and building-block approaches can both be used with shared

nothing & shared storage architectures

2020-03-10

Distributed storage: architectures

29Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA2020-03-10

Distributed storage: shared nothing architecture

Server

Data

Storage application

Server

Data

Storage application

Network

Server

Data

Storage application

Client

Storage Client

Application

Client

Storage Client

Application

Client

Storage Client

Application

Client

Storage Client

Application

B Building-blocks (B ≥ 1)

Building-block
example in a shared
nothing architecture

30Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA2020-03-10

Distributed storage: shared storage architecture

Client

GPFS/Lustre/... Client

Application

Client

GPFS/Lustre/... Client

Application

Client

GPFS/Lustre/... Client

Application

Client

GPFS/Lustre/... Client

Application

Server 1

GPFS/Lustre/GFS...
Server

Server 2

GPFS/Lustre/GFS...
Server

Data storage unit

Data

Data

secondary
data path

 secondary data path primary data path primary
data path

B Building-blocks (B ≥ 1)

Building-block
example in a shared
storage architecture

Network

31Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ The closer data is to the program the faster it can be accessed
➢ Big data infrastructure mantra: bring the code to the data and not the

data to the code
➢ Memory hierarchy:

➢ for speed: RAM > NVM (Flash etc.) > Disk (& Network) > Tape
➢ for capacity: Tape > Disk > NVM > RAM (Network ∞ ?)

➢ In memory processing

2020-03-10

Data locality

32Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Write only what matters, while storage may be "cheap", data
management is not

➢ Avoid intermediary files (or write them locally)
➢ Read/write largest possible relevant chunks, some storage systems

provide a preferred I/O size information
➢ Group writes (at the thread, process or file level)
➢ Use efficient high-level data libraries (ROOT, HDF5, even NumPy, ...)

before doing your own
➢ Avoid synchronous I/O unless you're sharing a file between machines

or if it's the final output

2020-03-10

Basic data performance best practices

33Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Data management plans (DMP) are important, data management is
tedious work

➢ Avoid putting all your files in the same directory
➢ Limit the number of files: more files  more work to manage data
➢ Avoid (lots of) extremely small files (< 512 B or 1 KiB), use a database

when it makes sense
➢ Data structure in memory and on persistent storage do not need to be

identical (serialization/marshalling)
➢ On Unix/Linux, be careful when you seek inside a file opened for:

➢ reading: going past the end of a file will yield an error
➢ writing: going past the end of a file will not (append & sparse files)

2020-03-10

Basic non-performance best practices

34Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ Use meaningful (and concise) directory names & filenames
➢ Even with Unicode, try to limit files/directories names to simple

printable characters (-+:%@_.) and alphanumericals (0-9, A-Z, a-z):
➢ avoid characters which can be interpreted by the shell or

programming language, or difficult to use in command arguments
➢ avoid creating files named: *, $, \, \n, \ESC^C^Z^D

➢ When creating filenames with a program, make sure you create a
printable name (C++, ROOT, ...): format integers as text

➢ When a filename contains a date, use ISO-8601 date format (e.g.
something between 2020-03-10 and 2020-03-10T09:58:19Z)

➢ Do not use chmod 777, chmod -R 777 (or chmod -R a+rwx) or similar

2020-03-10

Best practices for filenames (& permissions)

35Loïc Tortay, Storage Overview, DU-DS 2020, license CC BY-NC-SA

➢ If possible, do not focus on a preferred storage solution:
➢ parallel filesystems are nice, but does your use case actually need

one (global consistency, in-place updates, single namespace, etc.) ?
➢ object storage is nice, but do you actually need billions of objects or

pseudo-infinite scalability ?
➢ Ideally use an I/O abstraction layer which will allow a switch to

another storage system without changing the application itself
➢ For user defined metadata: use tags/extended attributes if available,

otherwise use a database instead of ancillary files (even SQLite)

2020-03-10

Application design

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

