Physicochemical measurement of the dose deposited by accelerated ions

Rojas Maria, Rabiee Sahel, Sakai Yuna, Urikova Daniela Veronika, Zarinshad Arefe

European Summer School: Radiation Measurements and radiochemistry in Environment and Decommissioning 1-5 July 2024, Strasbourg - Karlsruhe

Group 5: Quentin Raffy, IPHC

Why to study accelerated ions' effects?

To see the behaviour of molecules upon irradiation

Why do we need to know?

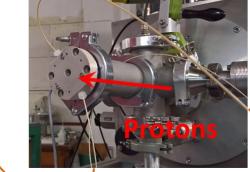
- 1. hadron therapy what is formed in the human body
- 2. degradation of materials (e.g. in nuclear reactors, space)
- 3. effects of radioactivity on environment

To measure the dose deposited by accelerated ions

Tasks:

- 1. To prepare the irradiation setup
- 2. Irradiate the **Fricke** solution with increasing fluences
- 3. Determination of the energy of the protons in the solution
- 4. Determination of the dose deposited in the solution

Experimental methodology


Particle accelerator: 4 MV Van de Graaff. ACACIA

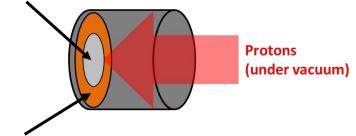
Particles: H^+ Energy : 2 MeV (0.5 – 3.5 MeV)

Closed loop. solution streaming. Irradiation of the solution with increasing dose

Irradiation cell

Beam line under vacuum 12 μm aluminized mylar window

Peristaltic pump


Sample

Determination of the fluence

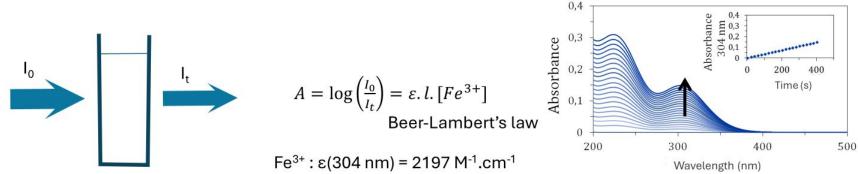
Definition Fluence: Number of particles per cm²

Mylar window

Faraday cup

→ measure of the ions' current during the irradiation Surface of the Faraday cup: 8.4 cm² Surface of the mylar window: 1.74 cm²

Charge counter: Count proportional to the electric charge in nC

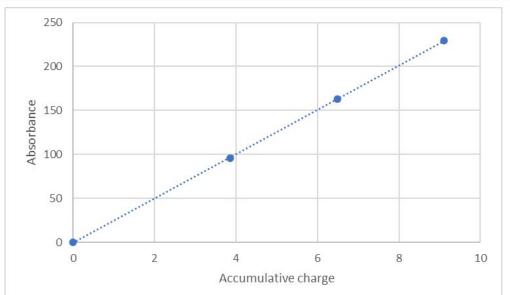


Fricke dosimeter

= chemical dosimeter

Fricke solution composition:In ultrapure (MilliQ)WaterMohr salt: $Fe(NH_4)_2(SO_4)_2$ 10^{-3} mol/LSufuric acid0.4 mol/LSodium chloride 10^{-3} mol/L

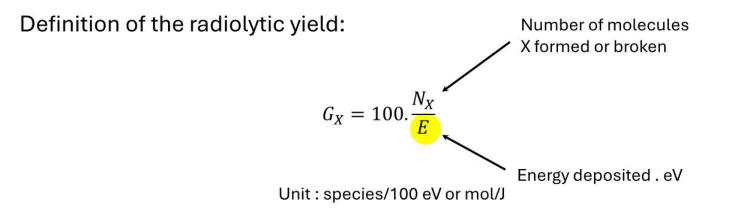
- Principle:
 radiolysis of water causes oxidation of Fe^{II} to Fe^{III}
- Fe^{III} complexes absorb light in the UV range
- quantity of produced Fe^{III} can be measured by UV-Vis



Dose measurement

- counting signal on the Faraday cup → theoretical dose
- calculation from the conversion of Fricke → measured

	Charge (nC)	Accumulative charge (nC)	Absorbance	# of ions	Energy (eV)	Dose (Gy)	Theoretical dose (Gy)
Dose 1	2.528	3.856	0.194	7.28E-05	0.672E+19	95.81	144.01
Dose 2	2.634	6.49	0.306	0.000124	1.142E+19	62.88	242.39
Dose 3	2.623	9.113	0.417	0.000174	1.608E+19	229.35	340.35



Difference of theoretical and practical dose value of up to 33%

Determination of radiolytic yields

Determination of the energy deposited \rightarrow Dose measurement / Dosimetry

Dose : energy deposited by the ionizing radiation per mass unit: Gray. Gy

$$G_{Fe3+} = 100.\frac{N_{Fe3+}}{E} \rightarrow E = 100.\frac{N_{Fe3+}}{G_{Fe3+}}$$