

Liberté Égalité Fraternité

Grégoire DOUGNIAUX

Context

In a nuclear site, a CAM trig an alarm for alpha contamination...

- 1) Evacuation of the area
- 2) Verifications by the radioprotection service
- 3) Declaration of the incident to the authorities

Context

In a nuclear site, a CAM trig an alarm for alpha contamination...

- 1) Evacuation of the area
- 2) Verifications by the radioprotection service
- 3) Declaration of the incident to the authorities

Life of an aerosol

FUNDAMENTALS OF AEROSOL PHYSICS

→ Schmauß 1920

Définition : an aerosol is a suspension of solid particles or liquid droplets in a gaz

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSIONING –

Aerosol behaviour

Domaines de la physique des aérosols (NF M 60-760)

Aerosol behaviour

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSIONING

Aerosol behaviour in the breathing system

ICRP	NF EN 481	
ET Extra thoracic	ET Extra thoracic	
BB Bronchus	TB Tracheo-bronchial	
bb Bronchioles	Α	
Al pulmonary alveoli	Alveoli	

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSIONING

Aerosol behaviour in the breathing system

The first radioactice aerosol : radon (²²²Rn), thoron (²²⁰Rn) & progenies (Po, Pb, Bi,...)

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSIONING

Aerosol _MAD measures : impactor activity / mass / ... median aerodynamic diameter

Aerosol _MAD measures : impactor activity / mass / ... median aerodynamic diameter

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSIONING –

AIRBORNE RADIOACTIVE AEROSOL MEASUREMENT

Measurement goals

Radionuclide	LPCA Bq/m³	
²²² Rn + progenies	200	
²³⁹ Pu	0,18	
²³⁷ Cs	1200	

LPCA : practical limit concentration in air → engaged dose of 20mSv over 2000h

Measurement strategy

Example of nuclides activities evolution on a sampling filter

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSIONI

Aerosol filtration – case of fibrous media

1 Inertial capture 2 Diffusion capture

3 Interception capture

3

3)

Aerosol filtration – case of membranous media

Inertial capture
 Diffusion capture
 Interception capture

Measuring radioactivity in the air - Metrology of aerosol contamination The specificity of radioactive aerosols emitting α

Membranous filter

IRSN

 α activity - emerging α activity - gross α activity, equivalent to xx

Fibrous filter

Aerosol depth penetration in media & impact on measurement

Illustrative example with a fibrous filter Under-estimation between 1,3 and 2,2 ! 2,5 Depth Surface filtration Clogging filtration 2,0 Correction factors 1,5 1,0 0,5 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 Dust loading (mg.cm⁻²)

GeoDict illustration

IRSN

Aerosol depth penetration in media & impact on measurement

Illustrative example with a membrane filter

Illustration

Fibrous filter Vs membranous filter for alpha spectrometry

Illustration of α measurement on a C569 filter (fibrous) and a FSLW filter (membranous)

Detection upgrade

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSIONING

Filter

2000 3000

Energy (ke

4000

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSIONING –

G 1-5 JULY 2024 ³

G. Hoarau *et al.*, Patent FR 3110709, 2021 G. Hoarau *et al.*, Health Physics (122-5) 2022 G. Dougniaux & G. Hoarau, Rad. Pro. Dos. (199-18), 2023

How the activity measurement is done?

Fig. 6. Evolution of the K parameter related to the particle mass sampled for the non-radioactive aerosols A (\Box), B (\blacktriangle), C (\circledast), and D (\bullet).

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSIONING –

Option 1: 4-ROI algorithm
Option 2: tail & peak-fitting
1) Peaks shapes have to be constant
2) Need a good statistic to perform the fits

 $\overset{222}{\xrightarrow{}} Rn \xrightarrow{\alpha} \dots \xrightarrow{\beta} \overset{214}{\xrightarrow{}} Bi \xrightarrow{\beta} \overset{214}{\xrightarrow{}} Po \xrightarrow{\alpha} \overset{210}{\xrightarrow{}} Pb$ **164 µs**

 $\overset{220}{\longrightarrow} \operatorname{Rn}^{\alpha} \xrightarrow{\beta} \overset{\beta}{\longrightarrow} \overset{212}{\longrightarrow} \operatorname{Bi}^{\beta} \overset{212}{\longrightarrow} \overset{208}{\longrightarrow} \operatorname{Pb}$ 300 ns

Option 2: tail & peak-fitting

Option **3**: ABPD Alpha-beta pseudo coincidence

Supress $\approx 25\%$ of radon events

Specific neural network

Option 1 : 4-ROI algorithm
Option 2: tail & peak-fitting
Option 3 : ABPD
Option 4 : IA

Spectra acquired in IEC standard conditions			
Algorithm	Accuracy	Precision	Recall
IA	100.00%	100.00%	100.00%
4-ROI	99.82%	99.96%	99.68%

Algorithm	Accuracy	Precision	Recall	
IA	99.74%	99.92%	99.56%	
4-ROI	62.22%	57.17%	95.02%	

Spectra acquired in dusty conditions

Amazing results not yet published from A. Roblin, PhD student

RADIOACTIVE AEROSOL METROLOGY

Monitor performance tests

Monitor description

Monitor description

- Aerosol retention before the detector
- Aerosol distribution on the collection filter
- Aerosol depth-penetration in the collection filter
- α self-absorption in the filter / deposit
- Radon/thoron influence on the measurements
- Algorithms performance

•••

M. Ammerich, Report CEA-R-5484, 1989 M. Guelin, Report CEA-R-5636, 1990 P. Zetwoog, JRNIST (95-2) 1990

Experimental installation : ICARE tests bench IRSN – Saclay – France

Strandard aerosol dimensions

Activity median aerodynamic diameter – AMAD (µm)

The ICARE test bench

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSION

Efficiency response for monitor #1

G. DOUGNIAUX – EUROPEAN SUMMER SCHOOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSIONING -

BOURG 1-5 JULY 2024

Efficiency response for monitor #2

G. DOUGNIAUX – EUROPEAN SUMMER SCHIPOL – RADIATION MEASUREMENTS AND RADIOCHEMISTRY IN ENVIRONMENT AND DECOMMISSION

Lab experiment

Ex situ measurement

2h measured spectrum vs usual background

Lab experiment

Modelisation of the evolution: $S_{dirty} = a \cdot S_{clean} + b \cdot S_{clean} * e^{-\frac{t}{\tau}}$

Lab experiment

2h measured spectrum vs usual background

CONCLUSION

Do not hesitate, sometimes I answers gregoire.dougniaux@irsn.fr

Conclusion – Radioactive aerosol metrology

1 – What is an aerosol

- 2 How a radioactive airborne contamination can be measured
- Continuous Air Monitor CAM
- Filtration
- Algorithms
- Detection limits
- 3 CAM tests: ICARE tests bench
- Behaviour in standard conditions
- Performance in complex situation, case of decommissioning site
- 4 Numerical twins
- Neural networks (IA algorithms)
- Aerosol numerical model + radiation transport simulation

ANNEXES

Areas of intervention

IRSN IS THE PUBLIC EXPERT ON NUCLEAR AND RADIOLOGICAL RISKS

NUCLEAR SAFETY AND SECURITY

Reactors, fuel cycle, waste management, transport of radioactive materials, radioactive sources.

Against the risks associated with ionizing radiation.

NUCLEAR AND RADIOLOGICAL EMERGENCY RESPONSE

Operational support capacity.

Key figures 2022

MORE THAN 100 TRADES

Researchers and engineers in biology, biochemistry, geology, chemistry, thermodynamics, mechanics, neutronics, IT, radiation protection, doctors, agronomists, veterinarians, technicians in biology, biochemistry, radiation protection, modelization ...

3 areas of expertise

HEALTH AND THE ENVIRONMENT

NUCLEAR SAFETY

IRSN is active in 3 areas : monitoring the environment, the population and the workers in normal, incidental and accidental situations, expert assessment and research. IRSN conducts studies, research and assesses the safety of nuclear facilities and the transport of radioactive materials, IRSN provides assistance and technical support in the field of sensitive activities

SECURITY

Example #2 : smoke & rain

Example #3 : fire !

Activity concentration: natural Vs artificial

Radionuclide	LPCA Bq/m³	Usual AMAD μm	Usual concentration #/m ³
²²² Rn + progenies	600	0,2	10 ¹⁰
²³⁹ Pu	0,18	1	8
²³⁷ Cs	1200	5	0,1

LPCA : practical limit concentration in air → engaged dose of 20mSv over 2000h

Standards

IEC 60761 2nd Ed:2002 - NF EN 60761 march 2005

Equipment for continuous monitoring of radioactivity in gaseous effluents

- part 1: General requirements
- part 2: Specific requirements for radioactive aerosol monitors including transuranic aerosols
- part 3: Specific requirements for radioactive noble gas monitors
- part 4: Specific requirements for radioactive iodine monitors
- part 5: Specific requirements for tritium monitors

IEC 61578 1st Ed:1997

Radiation protection instrumentation - calibration and verification of the effectiveness of radon compensation for alpha and/or beta aerosol measuring instruments - test methods

Type tests - Series 60761, parts 1 to 5

Static tests

- > Flow rate, leak tests, ...
- Background
- > Detection efficiency with solid sources

(Repeatability-reproducibility, saturation tests, influence of other radiations, ...)

Dynamic tests in real operating conditions (with aerosols)

- > Reference response: monitor indication versus reference activity
- > Linearity of the response in function of the activity concentration
- > Response time in function of the activity concentration
- > ²²²Rn: influence on the artificial measurement and effectiveness of the compensation
- > Head collection efficiency: in function of the size of the aerosol, flow rate, ...

COFRAC accreditation for 12 tests

