

Decommissioning of nuclear facilities

European Summer School, July 3rd 2024 Dr.-Ing. Carla-Olivia Krauß

Agenda

- Introduction of our institute
- Decommissioning of nuclear facilities
- Research projects in decommissioning of nuclear facilities
- Digitalization lab & Building Information Modeling (BIM)

- About 50 employees:
 - 4 Professors
 - 35 Research associates
 - 5 Workshop employees
 - 1 Construction engineer
 - 5 Administrative staff

Our Institute

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Test Facilities

- Test hall
- Workshop
- Test ground (6 hecters)
- Digitalization lab

Our Department

Deconstruction and Decommissioning of Conventional and Nuclear Buildings

- Head: Prof. Dr.-Ing. Sascha Gentes
 - 12 Research associates
 - 1 Construction engineer
 - 1 Workshop employee
 - 1 Administrative staff

Our Department

Deconstruction and Decommissioning of Conventional and Nuclear Buildings

Two topics:

- Decommissioning of conventional buildings:
 - Management and treatment of hazardous substances during the decommissioning
 - Reuse of material
 - Digitalization of building models
- Decommissioning of nuclear facilities:
 - Decontamination of nuclear power plants (NPP)
 - Optimization of mechanical processes for dismantling and decommissioning projects

8 03.07.2024

Our Department

Currently two lectures:

- Environmentally and recycling-friendly dismantling of buildings
- Decommissioning of nuclear facilities

In planning for next semester:

New lecture about digitalization of decommissioning of conventional buildings and nuclear facilities

Excursion to a demolition site

Decommissioning of nuclear facilities

Nuclear energy in the world

- Operating reactors: 416 reactors
 Under construction: 60 reactors
 Abandoned construction: 92 reactors
- Closed/long-term outage: 239 reactors

© https://www.worldnuclearreport.org/reactors.html#tab=iso;/

Nuclear energy in Germany

- After the Fukushima accident in 2011, the German government decided to stop nuclear power
- Presently, all nuclear power plants (NPP) are shut down
- 29 NPP's are in deconstruction phase
- The last NPP was shut down on 15th April 2023

Working principle of a nuclear reactor

© whatisnuclear.com

Decommissioning of nuclear facilities

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Decommissioning of nuclear facilities

Decontamination

Dismantling the turbine

© http://www.eon-kernkraft.com

Clearance measurement

© Wiederaufarbeitungsanlage Karlsruhe Betriebsgesellschaft mbH

© BGE

Karlsruhe Institute of Technology

Decommissioning of nuclear facilities

Time schedule for the transitions between power operation, post-operational phase and decommissioning Granting Release decommissio **Final** from nuclear shutdown ning supervision authorization approx. 4 years approx. 10 years Post-Decommissio **Power operation** operational "Green field" ning phase Operation Decommissioning authorization authorization

© To: Schlüter & www.bfs.de

Radioactive waste from the dismantling of a NPP

Radioactive waste for final disposal

- Reusable after treatment
- Directly releasable

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Radioactive waste

- Classification of radioactive waste
 - In Germany
 - Waste with low heat generation
 - Heat-generating waste

International

Dependency with activity content and half-life of radionuclides

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Conditioning/Packaging

- Packaging of low and medium-level waste:
 - Filling into 200 or 400 liter drums/standard containers
 - Mixed with concrete after pre-treatment

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

- Packaging of high-level waste
 - Castor stands for "Cask for Storage and Transport of radioactive Materials"
 - Four main requirements for the containers:
 - Safe containment of the radioactive contents, Shielding of the radiation, Dissipation of the heat generated by the radioactive materials, Ensuring subcriticality (impossibility of a chain reaction)

© www.gns.de

Storage in Germany

Storage types

20

Final storage in Germany

Final storage

- Disposal of waste by placing it in a specially designed facility
- Differentiation from interim storage
 - The need for monitoring, inspection and repair of any damage that may occur
- Differentiation into repositories for:
 - Low heat-generating waste
 - -> Konrad mine repository, storage probably from 2030
 - Heat-generating waste
 - -> No repository available, currently: site selection procedure

Konrad mine

Research projects in decommissioning of nuclear facilities

Research projects

Reasons for researching dismantling technologies:

- Radioactive waste minimization
- Supporting staff (improved safety and ergonomics in the workplace)
- Reducing radiation exposure for workers
- Increasing the efficiency of decommissioning procedures

Our research-projects

Current research projects:

- Validation of a continuous magnetic filter and sieving system for the treatment of particulate mixtures (KoMaSi)
- Development of a sampling system including quality assured sampling procedure for nonaccessible area (Bero)
- Automated non-destructive internal corrosion detection on radioactive drums (ZIKA)
- Advancement of a demonstrator for dry-mechanical decontamination of corners and inner edge in nuclear facilities (EKONT-2)
- Decommissioning Management and Leadership for Safety Education (DMaLSE)
- Robotic Systems for Decontamination in Hazardous Environments Phase II (ROBDEKON II)
- Visualization of trouble spots for Decontamination Work and Decision Measurements with the help of BIM (ViSDeMe)
- Wet sieving and magnetic separation of grain mixtures to minimize secondary waste in the decommissioning of nuclear facilities Subproject: Experiments with non-radioactive materials (NaMaSK)
- Research work on the decommissioning of nuclear facilities within the scope of the programoriented funding IV of the Helmholtz Association

SPONSORED BY THE

Our research-projects

Federal Ministry of Education and Research

Our Partners:

- IBASS GmbH & Co. KG
- Bundesanstalt f
 ür Materialforschung und -pr
 üfung (BAM)
- Kraftanlagen Heidelberg GmbH (KĂH)
- Zentralstelle f
 ür radioaktiven Abfall (ZRA)
- Labor für Maschinenkonstruktion und Produktentwicklung der Hochschule Konstanz Technik Wirtschaft und Gestaltung
- CONTEC Maschinenbau & Entwicklungstechnik GmbH
- sat. Kerntechnik GmbH
- Université Côte d'Azur (UCA)
- SKEMA Business School (SKEMA)
- J Repussard Conseil (JRC)
- Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (IOSB)
- Deutsche Forschungszentrum f
 ür K
 ünstliche Intelligenz (DFKI)
- Hochperformante Humanoide Technologien (KIT-H2T)
- Intelligente Sensor-Aktor-Systeme (KIT-ISAS)
- HKA Hochschule Karlsruhe
- Forschungszentrum Informatik (FZI)
- Götting KĞ
- ICP Ingenieurgesellschaft Prof. Czurda und Partner mbH (ICP)
- RWE Nuclear GmbH
- Institute for Nuclear Waste Disposal (INE) of Karlsruhe Institute of Technology (KIT)
- PreussenElektra

Waterjet abrasive suspension cutting (WAS)

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Separation-rig

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Transformation from batch to continuous process

Separation with batch process

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Continuously operated sieve

29

03.07.2024

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Decontamination of inner edges and impurities in NPP

- Cantilever plates 1.
- 2. Consoles
- 3. Beams
- Curved walls 4.
- 5. Wells
- 6. Openings
- 7. Staggered walls
- 8. Parting joints
- 9. Recesses

Versatile need for inside edge decontamination tool, only universal tools from the conventional construction in use

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Faculty of Civil, Earth and Environmental Sciences

Developed cutting tools (Ekont-1)

32 03.07.2024

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Test bench and experiments

- Central suction
- Feed rate and removal depth operation
- Research of external factors
 - Forces for the user
 - Vibrations
 - Sound level
 - Amount of dust
 - Particulate matter
 - Surface roughness

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Digitalization lab & Building Information Modeling (BIM)

36 03.07.2024

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Institute for Technology and Management in Construction Faculty of Civil, Earth and Environmental Sciences

Digitalization lab

- New lab for Digitalization of Decommissioning & Deconstruction
- Located at Campus East
- Named BIM D²:

Building Information Modeling Decommissioning & Deconstruction

Completion in early 2025

Digitalization lab

Digitalization lab: Purposes

- Teaching
- Workshops
- Exchange
- Office workplaces
- Software training
- Simulations
- Visualization with virtual reality (VR) or augmented reality (AR)

Short introduction to BIM

Building information modeling (BIM) is a process involving the generation and management of digital representations of the physical and functional characteristics of buildings and other physical assets

3D-model

Included information

e.g.:

Costs,

. . .

Materials,

Scheduling,

Advantages of digitalization/BIM

Integration of information about the radioactivity into the digital building model

- Overview of the presence of radioactivity
- Facilitated planning of the targeted and controlled removal and dismantling of components that are radioactive
- Digital technologies such as VR can compliment or possibly replace hot cell mock-ups
- Enabling virtual simulations

Advantages:

Less time spent in the control area required due to digitalization of processes

 \rightarrow Reduction of radiation exposure for staff

Research and BIM Planning BIM **BIM** application **BIM-Transformation** Cost estimation Introduction of BIM Simulations in companies Technical realization As-built survey Project management **BIM** coordination Creation of 3D model Cooperation Integration of semantic information

Current projects

3 projects:

- Robotic Systems for Decontamination in Hazardous Environments Phase II (ROBDEKON II)
- Visualization of trouble spots for Decontamination Work and Decision Measurements with the help of BIM (ViSDeMe)
- Platform based on Emerging and Interoperable Applications for enhanced Decommissioning processes (PLEIADES)
- 6 Employees

Measurement of surface activity

Digitization and modeling using BIM

Presentation of the project ROBDEKON II

Robotic Systems for Decontamination in Hazardous Environments Phase II

- Automation of hazardous decontamination work
- Transferring modern robot technologies into practical systems
- Bundling the scientific and technological expertise of the Federal Republic of Germany in a competence network
- Closed chain for the automation of decommissioning processes

Current decontamination process

- Challenges in dismantling
- Many process steps:
 - Inventory, gutting, treatment of plant components, decontamination and measuring of concrete surfaces
- No standardized procedure
- Lack of automation
- Labor-intensive and monotonous
- Accumulation of secondary waste

- Relief for decontamination personnel
- Increase in repeat accuracy
- Reduction of secondary waste

Chain for the automation of dismantling processes

Autonomous environmental exploration and radiation measurement

Digitization and modeling using BIM

Decontamination

බ් FZ

Measurement of surface activity

Removal of contaminated material

45 03.07.2024

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Presentation of the project ViSDeMe

<u>Vi</u>sualization of trouble <u>spots</u> for <u>de</u>contamination work and decision <u>me</u>asurements with the help of BIM

Digitalization of spatial data acquisition for the clearence of buildings

Federal Ministry of Education and Research

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß

Building clearance: current procedure

Procedure for building clearance:

- 1. Recording of all building areas to be released with all relevant information \rightarrow Room data recording
- 2. Free measurement of the areas (decision measurement)
- 3. Documentation of the spatial data acquisition and measurements as proof for the authorities
- Typical NPPs in Germany have between 100.000 m² and 450.000 m² of concrete surfaces that need to be measured for building approval → Mülheim-Kärlich (MüK) plant: approx. 200.000 m²
- Room data is currently recorded manually for the most part:

© https://www.preussenelektra.de/content/dam/revuglobal/preussenelektra/documents/UnsereKraftwerke/ Unterweser/unsere_kraftwerkeunterweserkkuinfotagposter.pdf

 \rightarrow No digital spatial models or similar are available for the further process steps.

Digitization during building clearance

Conclusion

- Institute:
 - Department with a topic about Decommissioning of nuclear facilities
- Decommissioning of nuclear facilities:
 - Relevant topic
 - Dismantling of NPPs
 - Packaging and storage of nuclear waste
- Research projects:
 - Research is necessary
 - There are many research projects (national, international, cooperation between industry und universities, ...)

Digitalization:

- Efficient documentation and knowledge about the radiation occurence and the dismantling process
- Standardization of processes
- Less radiation exposure of staff
- Topics related to automization and digitalization will grow and empower research in the next few years

Thank you for your attention!

https://www.tmb.kit.edu/english/941.php

50 03.07.2024

Decommissioning of nuclear facilities Dr.-Ing. Carla-Olivia Krauß