

Research at the Institute for Nuclear Waste Disposal (INE)

European Summerschool:

Radiation Measurements and Radiochemistry in Environment and Decommissioning

01.-05.07.2024

INSTITUT FÜR NUKLEARE ENTSORGUNG (INE)

	European Summer School		
Radiation Measurements and Radiochemistry in Environment and Decommissioning			
Visit at the Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT)			
	03 <u>July</u> 2024		
	Programme		
07:15 h	Bus to KIT		
09:00 h	Arrival at KIT-Campus North entrance		
09:30 h	Welcome at INE and Introduction	H. Geckeis	
09:45 h	Research towards radioactive waste disposal at KIT-INE	H. Geckeis	
10:30 h	Accelerator Mass spectrometry (AMS) for radionuclide analysis	F. Quinto	
11:15 h	Decommissioning of nuclear facilities	C. Krauss	
12.00 h	Transfer INE - Casino		
12:15 h	Lunch		

	Karlsruhe Institute of Technology
Transfer Casino - KARA	
Visit: Synchrotron based X-ray spectroscopic characterization of radionuclides	J. Rothe
End of visit	
	Transfer Casino - KARA Visit: Synchrotron based X-ray spectroscopic characterization of radionuclides End of visit

Topics

- What is KIT?
- Nuclear waste disposal in Germany
- Research at the Institute for Nuclear Waste Disposal

KIT – The Research University in the Helmholtz Association

Status: March 2024

KIT - The Research University in the Helmholtz Association

www.kit.edu

Figures and Facts 2023

48 Spinoffs and startups

358 Trainees

22,816 Students

5 Campuses – 200 ha area

300 Buildings with a usable area of **493,000** m²

3,244 Doctoral students

38 Patent applications

10,034 Employees

1,686 International scientists

414 Professors and executive scientists

KIT budget 2023 EUR 1163,1 million

KIT – Research and Innovation at 6 Locations

Campus North

Campus West

Campus South

Campus Alpine

Karlsruhe

Berlin

Dresden

Garmisch

Ulm

Campus East

Helmholtz Institute Ulm

KIT Research Profiles

Five Discipline-focused **Divisions**

Division I Biology, Chemistry, and Process Engineering	Division II Informatics, Economics, and Society	Division III Mechanical Engineering and Electrical Engineering	Division IV Natural and Built Environment	Division V Physics und Mathematics
---	--	---	---	--

Nine Interdisciplinary KIT Centers

The research programme NUSAFE **ELMHOLTZ** Nuclear Waste Management and Safety as well as Radiation Research ASSOCIATION für Ozeanforschung Kiel HELMHOLTZ Alfred-Wegener-Institut Synchrotron (DESY) Helmholtz-Zentrum für Polar-und Meeresforschung (AWI) ASSOCIATION **NUSAFE resources:** Max-Delbrück-Centrum für Molekulare Medizin (MDC) Helmholtz-Zentrum Geesthacht Berlin-Buch Zentrum für Material- und Küstenforschung (HZG) 234 FTE 2 Infektionsforschung (HZI) KIT Helmholtz-Zentrum Potsdam Deutsches GeoForschungs Berlin für Materialien 53% FZJ Zentrum GFZ FZJ Deutsches Zentrum für Luft-und Raumfahrt Umweltforschung - UFZ R 17% **HZDR** Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) GSI Helmholtzzentrum für Schwerionenforschung 9) Krebsforschungszentrum **KIT** HZDR Max-Planck-Institut für Plasmaphysik 30% \mathbf{C} 67% Nuclear Waste Management Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt

33% Reactor Safety

Topics

- What is KIT?
- Nuclear waste disposal in Germany
- Research at the Institute for Nuclear Waste Disposal

German policy: "Nuclear Phase-out"

15.04.2023

Atomausstieg Neckarwestheim 2

Letztes Atomkraftwerk im Südwesten ist vom Netz gegangen

Aus Baden-Württemberg fließt kein Atomstrom mehr ins deutsche Netz. Mit zwei anderen Meilern schreibt das Kernkraftwerk Neckarwestheim 2 Geschichte.

Aus dem Kühlturm am Kernkraftwerk Neckarwestheim steigt Wasserdampf. Mit der Trennung der Kernkraftwerke Isar 2, Neckarwestheim und Emsland vom Stromnetz endete am Samstag die Ära der kommerziellen Stromerzeugung mit Atomkraftwerken in Deutschland. Foto: dpa

Implementation of the German Site Selection Procedure

27.000 m³ highly radioactive waste (spent nuclear fuel, vitrified waste) Up to 620.000 m³ low and intermediate level waste (L/ILW) → licensed repository Konrad mine + another L/ILW repository to be decided

The site selection process (acc. to the German site selection bill, StandAG, 2017)

- 54% of the area in Germany is considered worth to be explored
- 90 site areas (60 salt domes, 14 stratiforme rock salt layers, 9 clay rock, 7 crystalline rock areas)

Crystalline rock

Argillaceous rock

Rock salt

Topics

- What is KIT?
- Nuclear waste disposal in Germany
- Research at the Institute for Nuclear Waste Disposal

Institute for Nuclear Waste Disposal (INE) @ KIT

Research and development activities at KIT-INE are an integral component of national provident research and encompass the following areas:

- > Long-term safety research for nuclear waste disposal
- > **Predisposal** decommissioning, extended interim storage
- > Fundamental actinide chemistry
- > Geothermal energy

Nuclear waste disposal research at KIT-INE

How do radionuclides and radioactive waste behave in a deep geological repository?

Safety concept of repositories for nuclear waste disposal relies on the multibarrier system → prevent / minimize the release of radionuclides into the biosphere.

Nagra (2014)

Assessment of Deep Geological Repository, AIP Conference Proceedings 1996, 020009 (2018).

Content of high-level nuclear waste spent fuel

Research on spent nuclear fuel (SNF) assemblies

- Quantification of ¹²⁹I and ³⁶CI inventories in irradiated SNF and zircaloy:
 - for the 1st time radio-chemical analysis of ³⁶Cl in irradiated Zircaloy, MOX and UO₂ fuels → good agreement between analyses and MCNP calculations for ³⁶Cl in claddings.

PhD thesis: T. König

Analysis by X-Ray Vision

Research on spent nuclear fuel (SNF) assemblies

- Quantification of ¹²⁹I and ³⁶CI inventories in irradiated SNF and zircaloy:
 - for the 1st time radio-chemical analysis of ³⁶Cl in irradiated Zircaloy, MOX and UO₂ fuels → good agreement between analyses and MCNP calculations for ³⁶Cl in claddings.
 - ³⁶Cl^{-/129}l⁻ exists in mixed solid phases (Cs, Te, Ba, U, Pu)
 - CI K-edge XANES characterization points to chemical environment different to CsCI
- Pellet-cladding interactions (simulated)
 - Indications for formation of complex Cs-U-O-Zr-CI-I compounds and consecutive pitting corrosion in cladding observed at <400°C (interim dry storage conditions)

5 mm SNF 1,4 Zircaloy 1,2 1,0 0,8 0,6 0.4 Zrv-UO 0,2 2800 2810 2820 2830 2840 2850 2860 2870 2880 2890 290 Energie [eV] Chlorine K-XANES

nom. Abs. [a.u.]

PhD thesis: T. König

XAFS/XRF investigation of a SNF particle sampled from a test fuel rod irrad. at the Gösgen (CH) PWR

Zr and Mo are found as Zr(IV) and Mo(0) (metallic state) in the SNF particle – the actinides in the oxidation states U(IV), Pu(IV), Am(III)

Nuclear waste disposal research

Safety concept of repositories for nuclear waste disposal relies on the multibarrier system → prevent / minimize the release of radionuclides into the biosphere.

Nagra (2014)

The role of PuCO₃OH(cr) to limit Pu-solubility

- Reduction of PuO_2^{2+} to Pu^{3+} (electrolysis), and precipitation as $Pu(OH)_3(s)$
- Equilibration of $Pu(OH)_3(s)$ in Na-HCO₃-CO₃ solution at pH ≈ 8
- After 10 months: transformation of Pu(OH)₃(s) into a blue fine crystalline solid

PhD thesis: P. Müller

- "sink" for Pu(III) at near-neutral pH
- * forms **spontaneous** from Pu(OH)₃(s)

Barrier function of container corrosion products

OH/Fe

 Repository for high-level nuclear waste inventory: molar ratio Fe:U:Pu ~ 40-50:1:0,01

Jolivet et al., Chem. Commun. 2004, 481-487

Barrier function of container corrosion products

- Interaction of trivalent actinide ions with magnetite -Pu interaction with magnetite (Kirsch, Scheinost et al. ES&T, 2011)

Am interaction with magnetite (Finck et al., 2015)

Am-O:	2.47 Å	
Am-Fe:	3.50 Å	
Finck, Nedel, Dideriksen, Schlegel, 2015		

Pu(III)-O:	2.48 Å
Pu(III)-Fe:	3.54 Å

Kirsch, Scheinost et al. ES&T, 2011

Pu-LIII EXAFS investigation of the Pu+Magnetite system

Laser technology for analysis ?

Times are changing

Antoine Henri Becquerel (1852-1908)

Becquerel studied 1896 the luminescence of $K_2UO_2(SO_4)_2$ *2H₂O and discovered radioactivity

Today, we study chemistry of radioactive elements by observing their luminescence

The Time Resolved Laser-Fluorescence Spectroscopy - The basic principle -

Impact of organic cement plasticisers on actinide solubility

PhD thesis: R. E. Guidone

Impact of organic cement plasticisers on actinide solubility

PhD thesis: R. E. Guidone

Cm-TRLFS spectra C-S-H suspension

Complexation of transferrin with Cm(III)

A complex with Cm(III) bound at the C-terminal binding site and another metal ion coordinated at the N-Lobe can potentially bind to the receptor and be brought into cells via endocytosis

N. Bauer, thesis Uni Heidelberg, 2015

Nuclear waste disposal research

Safety concept of repositories for nuclear waste disposal relies on the multibarrier system → prevent / minimize the release of radionuclides into the biosphere.

Thermische Dissoziation

Thermal dissociation

Colloid-borne naturally abundant U, Th in Boom-Clay porewater

Coupling: LC-OCD-OND-UVD - ICP-MS

A. Lunz, Masterthesis, 2022

Hyphenation of CE and SF-ICP-MS

Species	Limit of detection [mol·L ⁻¹] (3 σ)
²⁴² Pu	2·10 ⁻¹²
²³⁸ Pu	5·10 ⁻¹¹
²³⁷ Np	5·10 ⁻¹²
⁵⁶ Fe	5·10 ⁻⁹

(Graser, Lagos, Marquardt et al., Anal.Chem., 2015)

KIT - Institute for Nuclear Waste Disposal (INE)

