Higgs in MSSM with dim-5 and 6 operators

I. Antoniadis

CERN

Rencontres de Moriond EW 2010, La Thuile, 6-13 March 2010

- Effective operators from new physics at the multi-TeV scale
- MSSM: classification of dim 5 operators
 - physical consequences
- MSSM Higgs with dim 6 operators as well
 - comparable to dim 5 at large $\tan \beta$
 - alleviate the MSSM fine-tuning

with E. Dudas, D. Ghilencea, P. Tziveloglou '08, '09 + in progress

Motivation

- New physics/heavy particles may exist above LHC energies
- ullet Little hierarchy in MSSM $\ \ \ \ \ \sim 1\%$ fine tuning tension between LEPII bounds on the Higgs mass and SUSY particles
- Unknown new physics in the multi-TeV range parametrized by: local effective operators O_n^i of dim (4 + n)

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM/MSSM}} + \sum_{i} rac{c_{n}^{i}}{M^{n}} O_{n}^{i} \qquad \textit{E} << M$$

 $\it M$ not far from the electroweak/TeV scale \Rightarrow

lowest-dim operators \mathcal{O}_n^i can affect significantly the low energy physics

• study MSSM + effective operators \Rightarrow hints for new physics

Effective operators

Integrating out heavy fields \Rightarrow two types of higher-dim effective operators

- with two (or less) derivatives

from tree-level exchanges of massive states

$$\begin{split} |(\partial_{\mu} - Z'_{\mu})H|^2 - \frac{M^2}{2} Z'_{\mu} Z'_{\mu} & \rightarrow \quad \frac{1}{M^2} (H^{\dagger} \partial_{\mu} H)^2 \\ i \bar{\psi} \gamma^{\mu} D_{\mu} \psi - \frac{M^2}{2} Z'_{\mu} Z'_{\mu} & \rightarrow \quad \frac{1}{M^2} (\bar{\psi} \gamma_{\mu} \psi)^2 \end{split}$$

- higher-derivative operators (hdo) generated by:
 - mixing with heavy states
 - string theory DBI action, α'/loop corrections

$$\mathcal{L} = \frac{1}{2}(\partial\phi)^2 - \frac{\lambda_1\phi^4}{4} + \frac{1}{2}(\partial\chi)^2 + c(\partial\phi)(\partial\chi) - \frac{M^2\chi^2}{2} - \frac{\lambda_2\phi^2\chi^2}{2}$$

Integrate out the massive field $\chi \Rightarrow$

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - \frac{\lambda_1 \phi^4}{4} + \frac{c^2}{2} \Box \phi \frac{1}{M^2 + \Box + \lambda_2 \phi^2} \Box \phi$$
$$\rightarrow \frac{c^2}{M^2} (\Box \phi)^2 + \cdots$$

SUSY effective operators

General 2-derivative SUSY lagrangian: 3 functions of chiral superfields ϕ_i

- 1 real: Kähler potential K
- 2 analytic: superpotential W, gauge kinetic function f

$$\mathcal{L}_{susy} = \int \! d^4\theta \, K(\phi_i^{\dagger} e^V, \phi^i) + \int \! d^2\theta \, \left[W(\phi_i) + f_{ab}(\phi_i) \mathcal{W}^a \mathcal{W}^b \right] + \text{h.c.}$$

chiral gauge superfield $\mathcal{W} \sim \bar{D}^2 DV$

Higher-dimensional operators: encoded in power expansions

$$K = \phi_i^{\dagger} e^{V} \phi^i + \left(\frac{c_{jk}^i}{M} \phi_i^{\dagger} e^{V} \phi^j \phi^k + \text{h.c.} \right) + \cdots$$

$$W = \lambda_{ijk} \phi^i \phi^j \phi^k + \frac{c_{ijkl}}{M} \phi^i \phi^j \phi^k \phi^l + \cdots + f_{ab}(\phi_i) = \delta_{ab} + \frac{f_{abi}}{M} \phi^i + \cdots$$

the first terms in the rhs are renormalizable

hdo operators

- hdo in the superpotential

(a)
$$\frac{\lambda_{ij}}{M} \int d^2\theta \, \Phi_i \Box \Phi_j \sim \frac{\lambda_{ij}}{M} \int d^4\theta \, \Phi_i D^2 \Phi_j$$

$$\bar{D}^2 D^2$$

- hdo in the Kähler potential

(b)
$$\frac{k_{ij}}{M^2} \int d^4\theta \, \Phi_i^{\dagger} \, \Box \, \Phi_j \, , \quad \frac{k_{ijk}}{M^2} \int d^4\theta \, \Phi_i^{\dagger} \, \Phi_j D^2 \Phi_k \, , \quad \cdots$$

Higher-dim + hdo in MSSM

Generation from heavy fields

• Higher-dim operators: via interactions with heavy (super)fields

Example: singlet coupled to higsses in MSSM

Strumia '99 ; Brignole-Casas-Espinosa-Navarro '03 Dine-Seiberg-Thomas '07

$$W = \lambda \sigma H_1 H_2 + M \sigma^2 \quad \rightarrow \quad W_{\text{eff}} = \frac{\lambda^2}{M} (H_1 H_2)^2$$

⇒ can raise the Higgs mass in MSSM ?

• hdo operators: via mixing with heavy fields

MSSM Higgs mixing with heavy doublets

$$\int d^4\theta \sum_{i=1,2}^{3,4} H_i^{\dagger} H_i + \left(c_1 H_1^{\dagger} H_3 + c_2 H_2^{\dagger} H_4 + \text{h.c.} \right) + \int d^2\theta \left(\mu H_1 H_2 + M H_3 H_4 \right) + \text{h.c.}$$

 $\mu << M$ neglecting gauge interactions :

$$\int\!\! d^4\theta \left(H_1^\dagger H_1 + H_2^\dagger H_2 + \frac{c_1^2}{M^2} H_1^\dagger \Box H_1 + \frac{c_2^2}{M^2} H_2^\dagger \Box H_2 \right) \\ + \int\!\! d^2\theta \left(\mu H_1 H_2 + \frac{c_1 c_2}{M} H_1 \Box H_2 \right) + \mathrm{h.c.}$$
 dominant at low energy
$$\frac{1}{M} \int d^4\theta \left(H_2 e^{-V} D^2 e^V H_1 + \mathrm{h.c.} \right)$$
 gauge interactions

Classification of dim-5 (R-parity conserving): $MSSM_5 = \mathcal{L}_{MSSM} + \mathcal{L}^{(5)}$

Field redefinitions \Rightarrow **remove redundancy**

$$\begin{split} \mathcal{L}_{MSSM} &= \int\!\! d^4\theta \, \left(\mathcal{Z}_1 \, H_1^\dagger \, e^V \, H_1 + \mathcal{Z}_2 \, H_2 \, e^{-V} \, H_2^\dagger \right) + \mathrm{gauge} \, + \, \mathrm{matter} \\ &+ \int\!\! d^2\theta \, \left(\, Q \, \lambda_U \, U \, H_2 - Q \, \lambda_D \, D \, H_1 - L \, \lambda_E \, E \, H_1 + \mu \, H_1 H_2 \right) + \mathrm{h.c.} \end{split}$$

soft terms:
$$\mathcal{Z}_i(S, S^{\dagger})$$
, $\lambda_{U,D,E}(S)$, $\mu(S)$ spurion $S \equiv m_S \theta^2$

$$\mathcal{L}^{(5)} = \frac{1}{M} \int \! d^2\theta \mathcal{L}_F^{(5)} + \frac{1}{M} \int \! d^4\theta \mathcal{L}_D^{(5)}$$
 [12] [13]

$$\mathcal{L}_F^{(5)} \sim (\eta_1 + \eta_2 S) (H_1 H_2)^2$$

$$\mathcal{L}_{D}^{(5)} \sim (y_{U} + z_{U}S^{\dagger}) H_{1}^{\dagger} e^{V} Q \lambda_{U} U + (y_{D} + z_{D}S^{\dagger}) Q \lambda_{D} D e^{-V} H_{2}^{\dagger}$$
$$+ (y_{E} + z_{E}S^{\dagger}) L \lambda_{E} E e^{-V} H_{2}^{\dagger} + \text{h.c.}$$

up to field redefinitions

Physical consequences: New couplings from $\mathcal{L}_D^{(5)}$

'hard' SUSY terms $\sim z_F \mathcal{O}(\frac{m_S}{M})$:

• 'wrong Higgs' Yukawas: $H_1 \leftrightarrow H_2^{\dagger} \Rightarrow \text{Martin '99}$; Haber-Mason '07 $\tan \beta$ enhancement of Higgs decays into bottom quarks also in MSSM at 1-loop integrating out 'heavy' squarks \rightarrow double suppression: $\delta \lambda_b \sim \mathcal{O}(\frac{m_S^2}{M^2}) \times \text{loop factor}$

$$m_b = \frac{v \cos \beta}{\sqrt{2}} \left(\lambda_b + \delta \lambda_b + \Delta \lambda_b \tan \beta \right) \qquad \Delta \lambda_b : z_B$$

ullet Higgs - sfermion quartic interactions $h_1^\dagger h_2^\dagger \, ({
m squark})^2$

suppressed by $(Yukawa)^2$

If FCNC ansatz is relaxed for the 3rd generation ⇒

- ullet 'wrong Higgs' gaugino higgsino coupling $h_i ilde{h}_i ilde{g}$
- 'wrong Higgs' A-terms

new SUSY couplings $\sim y_F$:

• 4 pt contact interactions: $f - f - \tilde{f} = \tilde{f}$ \Rightarrow squark production enhancement for the 3rd generation

$$\mathcal{A}_{qq o ilde{q} ilde{q}} \sim rac{g_3^2}{\sqrt{s}} + rac{y_t y_b}{M}$$

MSSM contribution decreases with s while correction is constant

• higher point gauge interactions: $A - \tilde{h} - f - \tilde{f}$, $A^2 - h^{\dagger} - \tilde{h} - f - \tilde{f}$ $\tilde{g} - \tilde{h} - \tilde{f} - \tilde{f}$, $\tilde{g} - h^{\dagger} - f - \tilde{f}$

Physical consequences of MSSM₅: Higgs potential

$$\mathcal{V}_{\text{Higgs}} = m_1^2 |h_1|^2 + m_2^2 |h_2|^2 + B\mu(h_1 h_2 + \text{h.c.}) + \frac{g^2}{8} (|h_1|^2 - |h_2|^2)^2 + (|h_1|^2 + |h_2|^2) (\eta_1 h_1 h_2 + \text{h.c.}) + \frac{1}{2} [\eta_2 (h_1 h_2)^2 + \text{h.c.}]$$

$$g^2 = g_2^2 + g_Y^2 \qquad \eta_1 \sim \mu/M \qquad \eta_2 \sim m_S/M \qquad \text{[9]}$$

- $\eta_{1,2} \Rightarrow$ quartic terms along the D-flat direction $|h_1| = |h_2|$
- potential stability $\Rightarrow \eta_2 \ge 4|\eta_1|$

requiring η -corrections to be smaller than MSSM mass matrix elements \Rightarrow only η_2 can change the tree-level bound $m_h \leq m_Z$ but marginally:

$$rac{m_h^2-m_Z^2}{m_Z^2}\simeq \left\{egin{array}{ccc} 16\% & {
m for} & m_A=m_Z & \left(m_h\leq 105~{
m GeV}
ight) \ 0.002\% & {
m for} & m_A\simeq 1.5~m_Z \end{array}
ight.
ight.$$

quantum corrections are still needed for $m_h \gtrsim 114~{\rm GeV}$

Relevance of dim-6 operators

1) Relaxing the condition on potential positivity: guaranteed by dim-6 ops only one dim-6 along the D-flat direction induced by dim-5: $\propto \eta_1^2$

$$W = \eta_1 (H_1 H_2)^2 \longrightarrow V = \left| \frac{\partial W}{\partial H_i} \right|^2 \sim \eta_1^2 |H_1 H_2|^2 \left(|H_1|^2 + |H_2|^2 \right)$$

but 2nd minimum along the flat direction

stability of EW vacuum against tunelling \Rightarrow new constraints on $\eta_{1,2}$ \Rightarrow Blum-Delaunay-Hochberg '09

- tree-level mass Higgs bound can change above LEPII limit
- bigger parameter space for LSP being dark matter

Bernal-Blum-Nir-Losada '09

2) In the large $\tan \beta$ regime:

$$\delta_5 m_h^2 = \frac{4 m_A^2 v^2}{m_A^2 - m_Z^2} \frac{\eta_1}{\tan \beta} + \cdots + \frac{1}{M \tan \beta} \sim \frac{1}{M^2} \quad v_1 = v \cos \beta, v_2 = v \sin \beta$$

MSSM Higss with dim-6 operators

dim-6 operators can have an independent scale from dim-5

Classification of all dim-6 contributing to the Higgs potential

(without
$$SU/SY$$
) \Rightarrow

large $\tan \beta$ expansion: $\delta_6 m_h^2 = f v^2 + \cdots$

constant receiving contributions from several operators

$$f \sim f_0 \times \left(\mu^2/M^2, \ m_S^2/M^2, \ \mu m_S/M^2, \ v^2/M^2\right)$$

 $m_S=1$ TeV, M=10 TeV, $f_0\sim 1-2.5$ for each operator

$$\Rightarrow m_h \simeq 103 - 119 \text{ GeV}$$

⇒ MSSM with dim-5 and dim-6 operators:

possible resolution of the little hierarchy problem

Conclusions

- Effective actions with higher-dim/hdo:
 appropriate tools to parametrize our ignorance about new physics
- General analysis of their effects in MSSM ⇒
 classification of dim 5 (R-parity conserving):
 - (spurion dependent) field redefinitions to remove redundancy
 - additional couplings can be important
 e.g. enhanced squark production and Higgs decays into b-quarks
 - Higgs mass: can increase but not too much
- ullet Stability + higgs mass at large tan eta: dim-6 operators relevant
 - corrections can lift m_H above LEPII bound (just from dim-6)
- light stop or 'heavier' higgs at LHC ⇒ new physics beyond MSSM